F=K*X,
F=M*a
M*a=K*X
2.5*9.81=K*0.0276
24.525=K*0.0276
24.525/0.0276=K
K= 888.6 N/m ---- force constant
assuming 2.5 refers to the new extension, just divide F/ 0.025
to get
981N/m
Hello Micu212006
Question: <span> Both the large loose rocks and the small loose rocks used to be part of earth's solid rock layer
</span><span>
Answer: True
Hope This Helps!
-Chris </span>
Answer:
The acceleration of the ball as it rises to the top of its arc equals 9.807 meters per square second.
Explanation:
Let suppose that maximum height of the arc is so small in comparison with the radius of the Earth.
Since the ball is launched upwards, then the ball experiments a free-fall motion, that is, an uniform accelerated motion in which the element is accelerated by gravity. Then, the acceleration experimented by the motion remains constant at every instant and position.
Besides, the gravitational acceleration in the Earth and, in consequence, the acceleration of the ball as it rises to the top of its arc equals 9.807 meters per square second.
Answer: 4.9 x 10-3 N
Explanation:
A = 500cm^2 = 5 x 10^-2 m^2
V = 5 m/s
R = 10^-3 g/cm^2.sec = 10^-2kg/m^2 . sec
Prain water = R / V = 10^-2 / 5 = 2 x 10-3 kg/m^3
For the stationary bowl,
dm/dt =pAv= RA
F= dp/dt = (dm/dt) v = RAv = 2.5 x 10^-3 N
Bowl moving upwards to speed u = 2 m/s
dm/dt = pA ( v + u) / v
F = dp/dt = (dm/dt)(v+u) = RA (v+u)^2 / v = 4.9 x 10^-3 N