Answer:
The period would decrease by sqrt(2)
Explanation:
The restoring force is given by,
F = -kx
According to Newton's second law of motion,
ma = -kx
ma + kx = 0
The time period is given by,
T =
Where
is the angular velocity and it is given by,
= 
Now if the spring constant is doubled then,

Thus,
=



Thus, The period would decrease by sqrt(2).
Hence, option D is correct.
Answer:
The magnitude of the net electric field is:

Explanation:
The electric field due to q1 is a vertical positive vector toward q1 (we will call it E1).
On the other hand, the electric field due to q2 is a horizontal positive vector toward q2(We will call it E2).
Knowing this, the <u>magnitude of the net electric</u> field will be the<u> E1 + E2. </u>
Let's find first E1 and E2.
The electric field equation is given by:

Where:
- k is the Coulomb constant (k = 9*10^{9} Nm²/C²)
- q1 is the first charge
- d1 is the distance from q1 to P


And E2 will be:



Finally, we need to use the Pythagoras theorem to find the magnitude of the net electric field.



I hope it helps you!
Hi there!
We can use the following kinematic equation:

vf = final velocity (? m/s)
vi = intial velocity (0 m/s)
a = acceleration (5 m/s²)
d = displacement (8 m)
Plug in the givens and solve.

Answer:
The answer is 100J.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. In this question, the mass is equals to 50kg and the velocity is 2m/s
Now,
25kg×4m/s^2 = 100kgm/s^2 or 100J