1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
3 years ago
15

Water, with a density of 1000 kg/m3, flows out of a spigot, through a hose, and out a nozzle into the air. The hose has an inner

diameter of 2.25 cm. The opening in the nozzle that the water comes out of has a diameter of 2.00 mm. The water coming out of the nozzle, which is held at a height of 7.25 meters above the height of the spigot, has a velocity of 11.2 m/s. Neglecting viscosity and assuming that the water flow is laminar (not necessarily good assumptions, but let's not make this any harder than it already is), what is the pressure of the water in the hose right after it comes out of the spigot where the water enters the hose (to three significant digits)? Assume that ????=9.80 m/s2 and that the surrounding air is at a pressure of 1.013×105 N/m2
Physics
1 answer:
stepan [7]3 years ago
7 0

Answer:

   P₁ = 2.3506 10⁵ Pa

Explanation:

For this exercise we use Bernoulli's equation and continuity, where point 1 is in the hose and point 2 in the nozzle

          P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

          A₁ v₁ = A₂ v₂

Let's look for the areas

          r₁ = d₁ / 2 = 2.25 / 2 = 1,125 cm

          r₂ = d₂ / 2 = 0.2 / 2 = 0.100 cm

          A₁ = π r₁²

          A₁ = π 1.125²

          A₁ = 3,976 cm²

          A₂ = π r₂²

          A₂ = π 0.1²

          A₂ = 0.0452 cm²

Now with the continuity equation we can look for the speed of water inside the hose

           v₁ = v₂ A₂ / A₁

           v₁ = 11.2 0.0452 / 3.976

           v₁ = 0.1273 m / s

Now we can use Bernoulli's equation, pa pressure at the nozzle is the air pressure (P₂ = Patm) the hose must be on the floor so the height is zero (y₁ = 0)

           P₁ + ½ ρ v₁² = Patm + ½ ρ v₂² + ρ g y₂

          P₁ = Patm + ½ ρ (v₂² - v₁²) + ρ g y₂

Let's calculate

           P₁ = 1.013 10⁵ + ½ 1000 (11.2² - 0.1273²) + 1000 9.8 7.25

           P₁ = 1.013 10⁵ + 6.271 10⁴ + 7.105 10⁴

           P₁ = 2.3506 10⁵ Pa

You might be interested in
Which of the following is MOST useful to scientists in measuring the size of asteroids?
Alenkasestr [34]

Answer:c-The gravitational effect when spacecraft flies close to the asteriod

Explanation:

Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.

The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.

Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.

5 0
2 years ago
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
3 years ago
Two small children decide it would be fun to toss a couple of large cats at each other. Cat A (7kg) is thrown at 7m/s and cat B
Alex777 [14]

Answer:

V=4.7m/s

Explanations:

Let Ma mass of cat A=7kg

Va velocity of cat A=7m/s

Mb mass of cat b=6.1kg

VB velocity of cat b=2m/s

From conservation of linear momentum

MaVa+MbVb=(Ma+Mb)V

7*7+6.1*2=(7+6.1)V

61.2=13.1V

V=4.7m/s

3 0
3 years ago
What happens to a radioactive isotope as it decays?
kupik [55]
It becomes a different element
8 0
3 years ago
On the way home from school, Taylor's car runs out of gas. He has to walk 25m north and 10m west in order to reach the nearest g
spin [16.1K]

Answer:

<em>The distance is 35 m and the magnitude of the displacement is 26.93 m</em>

Explanation:

<u>Displacement  and Distance</u>

These are two related concepts. A moving object constantly travels for some distance at defined periods of time. The total distance is the sum of each individual distance the object traveled. It can be written as:

dtotal=d1+d2+d3+...+dn

This sum is calculated independently of the direction the object moves.

The displacement only takes into consideration the initial and final positions of the object. The displacement, unlike distance, is a vectorial magnitude and can even have magnitude zero if the object starts and ends the movement at the same point.

Taylor walks 25 m north and 10 m west. The total distance is the sum of both numbers:

d = 25 m + 10 m = 35 m

To calculate the displacement, we need to know the final position with respect to the initial position. If we set the coordinates of Taylor's car as the origin (0,0), then his final position is (-10,25), assuming the west direction is negative and the north direction is positive.

The magnitude of the displacement is the distance from (0,0) to (-10,25):

D=\sqrt{(25-0)^2+(-10-0)^2}

D=\sqrt{625+100}=\sqrt{725}

D = 26.93 m

The distance is 35 m and the magnitude of the displacement is 26.93 m

8 0
3 years ago
Other questions:
  • Jose is loading his luggage into his car so that he can go to visit his grandmother. He lifts his suitcase up a 10 m staircase i
    14·1 answer
  • Why, on a sunny day, it is normally hot inside a greenhouse
    12·1 answer
  • When a wave passes from one medium to another, its _________ remains constant.
    9·1 answer
  • Which of the following is equivalent to 2,100 grams?
    7·2 answers
  • At the surface of the earth, there is an approximate average solar flux of 0.75 kW/m2. A family wishes to construct a solar ener
    14·1 answer
  • A disk has a radius of 30 cm and a mass of 0.3 kg and is turning at 3.0 rev/s. A trickle of sand falls onto the disk at a distan
    13·1 answer
  • Convert 15 centimeters to inches.
    5·1 answer
  • Lead has a density of 11. 5 g/cm³. A rectangular block of lead measures 7 cm x 5 cm x 2 cm.
    8·1 answer
  • A 5.20-N force is applied to a 1.05-kg object to accelerate it rightwards across a friction-free surface. determine the accelera
    7·2 answers
  • Which term names the part of a sound wave by which frequency or pitch is measured?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!