Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr
Answer:
Both balls have the same speed.
Explanation:
Janelle throws the two balls from the same height, with the same speed. Both balls will have the same potential and kinetic energy. Energy must be conserved. When the balls pass Michael, again they must have the same potential and kinetic energy.
Sound wave > electric signal > radio wave > sound wave
Answer:
26b) 66.7%
27) 500 N
Explanation:
26.a) In a two pulley system, the load is attached to one of the pulleys. The other pulley is attached to a fixed surface, as well as one end of the rope. The other end of the rope goes around moving pulley, then around the fixed pulley.
26.b) Mechanical advantage is the ratio between the forces:
MA = load force / effort force
Efficiency is the ratio between the work:
e = work done on load / work done by effort
Work is force times distance.
e = (F load × d load) / (F effort × d effort)
Rearranging:
e = (F load / F effort) × (d load / d effort)
e = MA × (d load / d effort)
In a two pulley system, the load moves half the distance of the effort. So the efficiency is:
e = (4/3) × (1/2)
e = 2/3
e = 66.7%
27) In a three pulley system, the load moves a third of the distance of the effort.
e = (F load / F effort) × (d load / d effort)
0.40 = (600 N / F) × (1/3)
F = 500 N
Answer:
304 meters downstream
Explanation:
The given parameters are;
The speed of the swimmer = 2.00 m/s
The width of the river = 73.0 m
The speed of the river = 8.00 m/s
Therefore;
The direction of the swimmer's resultant velocity = tan⁻¹(8/2) ≈ 75.96° downstream
The distance downstream the swimmer will reach the opposite shore = 4 × 73 = 304 m downstream
The distance downstream the swimmer will reach the opposite shore = 304 m downstream