Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Odd though it seems at first, gravity is pulling the cat down while the floor is pushing the cat up - in equal amounts. Forces are absolutely acting on the cat but they balance - so there is no net force.
Answer:
a) I=35mA
b) P=1.73W
Explanation:
a) The max emf obtained in a rotating coil of N turns is given by:

where N is the number of turns in the coil, B is the magnitude of the magnetic field, A is the area and w is the angular velocity of the coil.
By calculating A and replacing in the formula (1G=10^{-4}T) we get:


Finally, the peak current is given by:

b)
we have that


hope this helps!!
Transmission electron microscope