Answer: 5.3 x 10^24 formula units of silver nitrate is equivalent to 8.8 moles of silver nitrate. Silver nitrate is an ionic compound, therefore, its representative particle is called a "formula unit" instead of molecule. For every mole of a substance, we know that there are 6.022 x 10^23 representative units of that substance. The amount of particles in one mole of substance is called Avogadro's number.
Further Explanation:
We can convert from number of representative particles to moles using the formula:

For this problem, we can calculate the number of moles by plugging in the given values to the equation above,

Learn More
- Learn more about representative particles brainly.com/question/8969313
- Learn more about Avogadro's number brainly.com/question/229300
- Learn more about mole conversions brainly.com/question/1370888
Keywords: moles conversion, Avogadro's number
Answer:
C₁₆H₃₂O₂ (s) + 22O₂(g) → 16CO₂(g) + 16H₂O(g)
Explanation:
In order to determine a combustion reaction we should know that:
Reactants are: X compound and O₂
Products are: CO₂ and H₂O
In this case, the X compound is the solid palmitic acid: C₁₆H₃₂O₂
The balanced equation will be:
C₁₆H₃₂O₂ (s) + 22O₂(g) → 16CO₂(g) + 16H₂O(g)
Answer:
Electrons "surround"
Explanation:
Protons and neutrons "make up" the nucleus so they are contained "within" the nucleus meaning that electrons would "surround" the nucleus as they orbit around the nucleus
Answer: The percentage composition of nitrogen , hydrogen and oxygen is 22.2 % , 1.59 % and 76.2% respectively.
Explanation:
Percentage composition is defined as the ratio of mass of substance to the total mass in terms of percentage.
Percentage composition=
a) 

b) 

c) 

The percentage composition of nitrogen , hydrogen and oxygen is 22.2 % , 1.59 % and 76.2% respectively.
Answer: The statement collisions only result in a reaction if the particles collide with a certain maximum energy called the activation energy of the reaction, is false.
Explanation:
Activation energy is the minimum amount of energy required to initiate a chemical reaction.
So, when activation energy for a reaction is lower then molecules with lower energy can also participate in the reaction. As a result, more number of collisions will take place due to which an increase in the rate of reaction will takes place.
When activation energy for a reaction is larger then molecules with higher energy will not be able to participate in the reaction. As a result, less number of collisions will take place due to which a decrease in rate of reaction will occur.
Therefore, we can conclude that the statement collisions only result in a reaction if the particles collide with a certain maximum energy called the activation energy of the reaction, is false.