An energy diagram of a chemical reactions illustrates the changes of energy as the chemical reactions advances.
At first, the energy in the diagram is the energy of the reactants.
As the reaction goes forward, the reactants start to react forming a transition compound, with a maximum energy level on the graph. This is the hill. So the hill represents the Activation Energy.
After that, the energy starts to decrease and at the end you have the energy of the products, which may be higher or lower than the initial energy of the reactants, depending upon whether the reaction is exothermic or endothermic.
For exothermic reactions the energy level of the products is lower than the energy level of the reactants, while for endothermic reactions the energy level of the products is higher than the energy level of the reactants.
The answer is A) Water has surface tension.
This is the correct answer because water allows animals and really light items to rest upon the top of the water.
Hope This Helps! If you could mark me as the brainiest answer, that would be amazing. I want others to read this answer and know it is accurate. If you need help with another question, just ask. :)
When a capacitor has a potential difference between the plates it is said to be Constant.
Both plates have different charge which signifies that one has higher potential than the other.
Therefore, when we join them in parallel, charge will flow from higher to lower. and it continued to flow until equilibrium (the entire process took only a few seconds), indicating that the potential remains constant.
To learn more about constant potential difference in capacitor visit:
brainly.com/question/3480856
#SPJ4
D, because C12 means there's 12 atoms of carbon.
Answer:
23.8 L
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the volume in liters of a 0.0380M potassium iodide solution that contains 150 g of potassium iodide. Be sure your answer has the correct number of significant digits.</em>
<em />
The molar mass of potassium iodide is 166.00 g/mol. The moles corresponding to 150 grams are:
150 g × (1 mol/166.00 g) = 0.904 mol
0.904 moles of potassium iodide are contained in an unknown volume of a 0.0380 mol/L potassium iodide solution. The volume is:
0.904 mol × (1 L/0.0380 mol) = 23.8 L