- The student weighs out 0.0422 grams of the metal magnesium, thus we can figure that the more's, the magnesium he used, is the mass of the magnesium over the more mass, which is 0.024422.
- That is approximately 0.001758.
- Furthermore, it claims that too much hydrochloric acid causes the metal magnesium to react, producing hydrogen gas.
- The volume of collected gas is 43.9 cc, the mastic pressure is 22 cc, and a sample of hydrogen gas is collected over water in a meter.
<h3>Is it true that calculations made utilizing experimental and gathered data result in a percent error? </h3>
- Consequently, we are aware that magnesium and chloride react.
- We create 1 as the reaction ratio is 1:2.
- The hydrogen and 1 are more.
- Magnesium chloride is more.
- Therefore, based on this equation, we can infer that the amount of hydrogen that would be created in this scenario is greater than the amount of magnesium present here, or 0.001758 more.
- Among hydrogen, there is.
- \Once we convert the temperature from 32 Celsius to kelvin, we can tell you that the temperature is actually about 5.15 kelvin.
- The gas has a volume of 43 in m, which is equal to 0.0439 liter and indicates that the pressure is approximately 832 millimeter.
- Mercury, which is 2 times 13332 plus ca, or roughly 110922.24 par, is a mathematical constant.
- So, in this instance, we are aware that p v = n r t.
- The r in this case equals p v over n t, thus we want to determine the r.
- So p is 110922.24. The temperature is 305.15 and the V is 0.04 over the n is 0.001758.
- Let's proceed with the calculations right now.
- In this instance, you will discover that the solution is 9.077 times 10; that is all there is to it.
To learn more about Magnesium chloride reactions visit:
brainly.com/question/27891157
#SPJ4
B and E are the answers I would choose.
On the left side, you have 2 nitrogen. On the right, you only have one. So put a 2 in front of the NH3. That gives you balanced nitrogen.
After that step, you have 6 hydrogen (the coefficient x the subscript) on the right, so you need to get 6 on the left. You have 2 hydrogen (subscript). 6/2 = 3, so put a coefficient of 3 in front of the H2, and you’ll have 6 hydrogen.
Your balanced equation is N2 + 3H2 -> 2NH3
Please lmk if you have questions.
Answer:
Exothermic reaction
Explanation:
Exothermic reaction is a reaction in which energy is evolved from the reaction to the surroundings
In Chemistry, when we say Group, this term refers to the column in the periodic table wherein the elements in it share the same valence electron structure, as well as their physical and chemical properties. Therefore, based on the statements above, I can say that the answer would be the first option.