Answer:
The correct answer is 32.2 grams.
Explanation:
Based on the given information, the enthalpy of formation for aluminum oxide is 1676 kJ/mol. It signifies towards the energy that is required to generate aluminum and oxygen, and both of these exhibit zero enthalpy of formation. Therefore, the ΔHreaction is the required energy to generate 2 moles of aluminum. Thus, the energy needed for the formation of single mole of aluminum is,
ΔHrxn = 1676/2 = 838 kJ/mol
Q or the energy input mentioned in the given case is 1000 kJ. Therefore, the number of moles of Al generated is,
(1000 kJ) / (838 kJ/Al mole) = 1.19 moles of Aluminum
The grams of aluminum produced can be obtained by using the formula,
mass = moles * molecular mass
= 1.19 * 26.98
= 32.2 grams.
Conjugated dienes routinely undergo 1,2 and 1,4 addition reactions with a variety of electrophilic reagents; this suggests that electrophilic reagents are likely intermediates during these reactions.
Two double bonds and one single bond divide a conjugated diene into two halves. Nonconjugated (Isolated) Dienes have more than one single bond separating two double bonds. Two double bonds are joined to the same atom to form cumulated dienes.
Reagents that function by acquiring electrons or sharing electrons that once belonged to a foreign molecule are referred to as electrophilic reagents, or electrophiles, in some cases. Electrophiles are molecules with a positive charge and a lack of electrons that can react by exchanging electron pairs with nucleophiles, which have many electrons. Epoxides, hydroxy amines, nitroso and azoxy derivatives, nitrenium ions, and elemental sulfur are significant electrophiles.
To know more about Electrophiles refer to: brainly.com/question/21773561
#SPJ4
No it does noot evaporate faster than sugar in water
Weather refers to short term atmospheric conditions while climate is the weather of a specific region averaged over a long period of time. Climate change refers to long-term changes.
Answer:
That involve the complete transfer of an electron from one atom of an element to another