Answer: C) 0.020 m
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.

where,
n = moles of solute
= weight of solvent in g
Mole fraction of
is =
i.e.
moles of
is present in 1 mole of solution.
Moles of solute
= 
moles of solvent (water) = 1 -
= 0.99
weight of solvent =
Molality =
Thus approximate molality of
in this solution is 0.020 m
Answer:
<em>- 0.0413°C ≅ - 0.041°C (nearest thousands).</em>
Explanation:
- Adding solute to water causes the depression of the freezing point.
<em>ΔTf = Kf.m,</em>
Where,
ΔTf is the change in the freezing point.
Kf is the freezing point depression constant (Kf = 1.86 °C/m).
m is the molality of the solution.
<em>Molality is the no. of moles of solute per kg of the solution.</em>
- <em>no. of moles of solute (glucose) = mass/molar mass</em> = (8.44 g)/(180.156 g/mol) = <em>0.04685 mol.</em>
<em>∴ molality (m) = no. of moles of solute/kg of solvent</em> = (0.04685 mol)/(2.11 kg) = <em>0.0222 m.</em>
∴ ΔTf = Kf.m = (1.86 °C/m)(0.0222 m) = 0.0413°C.
<em>∴ The freezing point of the solution = the freezing point of water - ΔTf </em>= 0.0°C - 0.0413°C = <em>- 0.0413°C ≅ - 0.041°C (nearest thousands).</em>
From shortest wavelength to longest wavelength: ultraviolet ,visible light ,infrared