Answer:
2.03 moles of Gold
Explanation:
Gold is one of the most precious metal metal used in many applications and mainly as a jewellery. In terms of purity it is categorized in Karats. 24 Karat is considered the purest Gold (i.e. 100 % Gold) while other Karats (14, 18, 22 e.t.c) are alloys with other metals and gyms.
Data Given:
Mass of Gold = 400 g
A.Mass of Gold = 196.97 g.mol⁻¹
Calculate Moles of Gold as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 400 g ÷ 196.97 g.mol⁻¹
Moles = 2.03 moles of Gold
Answer:
solid
Explanation:
Melting and boiling points of Group 7 elements State at room temperature Room temperature is usually taken as being 25°C. At this temperature, fluorine and chlorine are gases, bromine is a liquid, and iodine and astatine are solids. There is therefore a trend in state from gas to liquid to solid as you go down the group.
The valence electrons are the parts of an atom that make interactions and make chemical bonds.
Every atom is made of three different components, a positively charged proton, neutrally charged neutron and negatively charged electron. The protons and the neutrons make up the atom's core and the electrons orbit around that core.
The electrons that orbit around the atom's core in its outer-most orbit (the one that is the furthest from the atom's core) can interact with electrons of other atoms, forming different kinds of chemical bonds.
If there is an exchange of the electrons (one atom donates its electrons to another atom), that results in forming of ions, then those two atoms can be linked in an ionic bond.
If an electron is shared between two atoms, then that bond is called a covalent bond.
Are produced 72 grams of water in this reaction.
<h3>Mole calculation</h3>
To find the value of moles of a product from the number of moles of a reactant, it is necessary to observe the stoichiometric ratio between them:

Analyzing the reaction, it is possible to see that the stoichiometric ratio is 1:2, so we can perform the following expression:



So, if there are 2 mols of Ca(OH)2:
Ca(OH)2 | H2O


Finally, just find the number of grams of water using your molar mass:


So, 72 grams are produced of water in this reaction.
Learn more about mole calculation in: brainly.com/question/2845237