Answer:
According to Newton's second law of motion, acceleration is directly proportional to force. As the force increases (when mass is constant), the acceleration increases. This can be shown in the following formula.


f = force
m = mass
a = acceleration
<h3>
Answer:</h3>
172.92 °C
<h3>
Explanation:</h3>
Concept being tested: Quantity of heat
We are given;
- Specific heat capacity of copper as 0.09 cal/g°C
- Quantity of heat is 8373 calories
- Mass of copper sample as 538.0 g
We are required to calculate the change in temperature.
- In this case we need to know that the amount of heat absorbed or gained by a substance is given by the product of mass, specific heat capacity and change in temperature.
Therefore, to calculate the change in temperature, ΔT we rearrange the formula;
ΔT = Q ÷ mc
Thus;
ΔT = 8373 cal ÷ (538 g × 0.09 cal/g°C)
= 172.92 °C
Therefore, the change in temperature will be 172.92 °C
Answer:
the charge carriers have an energy 2.8 10⁻¹⁹ J
Explanation:
The energy in a diode is conserved so the energy supplied must be equal to the energy emitted in the form of photons.
The energy of a photon is given by the Planck expression
E = h f
the speed of light, wavelength and frequency are related
c = λ f
we substitute
E =
a red photon has a wavelength of lam = 700 nm = 700 10⁻⁹ m
we calculate the energy
E = 6.626 10⁻³⁴ 3 10⁸/700 10⁻⁹
E = 2.8397 10⁻¹⁹J
therefore the charge carriers have an energy 2.8 10⁻¹⁹ J,
C. inertia. the man is sent flying off the bus because of his weight and the sudden stop of the bus. this effect is called inertia. an example of gravity would be throwing an apple up and having it come to the ground. an example of weight would be putting a man and an elephant on a scale and having the elephant come down while the man goes up.