Answer:
he will use kinetic energy to break through the door
Explanation:
because kinetic energy is movement and force
4 km in 30 min then 8 km in 60min or an hr. so 8km/hr.
The value of spring constant and the oscillator's damping constant is
K= 6605.667008, b= 0.002884387
Explanation:
For Weakly damping spring oscillator
K/m = W_0^2 (at resonance)
K= mW_0^2
=0.206 * ( 2π * 28.5) ^2
=0.206 * (2π)^2 * (28.5)^2
K= 6605.667008
F = - bV
b= -F/V = -F/ -W_0 * m
=F/W_0 * m
= 0.438N / 2π * 28.5 * 0.848
b= 0.002884387
1.3 second of time will be required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 105 km
<h3>
What is Speed ?</h3>
Speed is the distance travelled per time taken. It is a scalar quantity. And the S.I unit is meter per second. That is, m/s
In the given question, we want to find how much time is required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 10^5 km.
What are the parameters to consider ?
The parameters are;
- The distance S = 3.85 ×
km
- The Speed of Light C = 3 ×
m/s
Speed = distance S ÷ Time t
Convert kilometer to meter by multiplying it by 1000
C = S/t
3 ×
= 3.85 ×
/ t
Make t the subject of formula
t = 3.85 ×
/ 3 × 
t = 1.2833
t = 1.3 s
Therefore, 1.3 second of time will be required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 105 km
Learn more about Speed here: brainly.com/question/4931057
#SPJ1
True
From what Ive learned its like how you create your own hypothesis for a science experiment it may not work completely that way but you learn what didnt work and what does work