<u>Acceleration</u> is the rate at which <u>velocity</u> changes.
The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1
Answer:
v = 10 m/s
Explanation:
given,
Mass of Mercedes engine = 2000 Kg
Power delivered = 100 kW
angle made with horizontal = 30°
acceleration due to gravity = 10 m/s²
largest speed car can sustain = ?
we know,
Power = Force x velocity
P = F x v
P = mg sinθ x v
P = mg sin 30° x v
P = 0.5 mg x v

v = 10 m/s
hence, the maximum velocity is equal to v = 10 m/s
The correct statements are:
B. a small rock sitting on top of a big rock
As the rock is at a height with respect to ground it has potential Energy
and
C. a stretched rubber band
A stretched rubber band has elastic potential energy
The others are actually moving and hence would consist of Kinetic energy. Potential energy is stored in objects that do not move and are stationary.