Answer:1
Explanation:
If
s=displacement
v=velocity of particle
a=acceleration of particle
acceleration can be written as rate of change of velocity
so 
multiply and divide by 




option 1 is correct
Answer:
the answer is force . force is applied as a push or pull
Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
Answer:
The net magnetic field ta the center of square is
.
Explanation:
Current, I = 12 A , side ,a = 10 cm = 0.1 m
Let the magnetic field due to the one side is B.
The magnetic field is given by

Net magnetic field at the center of the square is
B' = 4 B

PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance