Answer:
a) = 0.704%
b) = 1.30%
c) = 2.60%
Explanation:
Given that:
= 
For Part A; where Concentration of A = 0.270 M
Percentage Ionization(∝) 



percentage% (∝) = 
= 0.704%
For Part B; where Concentration of B =
M



percentage% (∝) = 0.0130 × 100%
= 1.30%
For Part C; where Concentration of C= 



percentage% (∝) = 0.02608 × 100%
= 2.60%
Answer:
I think the answer would be option d.
hope it helps.
Answer:
t = 7.58 * 10¹⁹ seconds
Explanation:
First order rate constant is given as,
k = (2.303
/t) log [A₀]
/[Aₙ]
where [A₀] is the initial concentraion of the reactant; [Aₙ] is the concentration of the reactant at time, <em>t</em>
[A₀] = 615 calories;
[Aₙ] = 615 - 480 = 135 calories
k = 2.00 * 10⁻²⁰ sec⁻¹
substituting the values in the equation of the rate constant;
2.00 * 10⁻²⁰ sec⁻¹ = (2.303/t) log (615/135)
(2.00 * 10⁻²⁰ sec⁻¹) / log (615/135) = (2.303/t)
t = 2.303 / 3.037 * 10⁻²⁰
t = 7.58 * 10¹⁹ seconds
The concentration of [CI-] : 0.617 M
<h3>Further explanation</h3>
FeCl₃ dissolved in 450 mL of solution(will dissociate )
Reaction
FeCl₃⇒Fe³⁺+3Cl⁻
- mol FeCl₃(MW=162,2 g/mol)



Answer:
There is a lot of empty space between them
Explanation:
We know that gas molecules are loosely packed,
Therefore there is a lot of intermolecular space...(Which basically means that there is a lot of space between the molecules or particles in a gas)
Happy to help.
Pls mark as Brainliest.