Answer:
4.8 grams of H₂ will be produced if 175g of HCI are allowed to react completely with sodium
Explanation:
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) you can see that the following amounts in moles of each compound react and are produced:
- HCl: 2 moles
- Na: 1 mole
- NaCl: 2 moles
- H₂: 1 mole
You know the following masses of each element:
- H: 1 g/mole
- Cl: 35.45 g/mole
- Na: 23 g/mole
So, the molar mass of each compound participating in the reaction is:
- HCl: 1 g/mole + 35.45 g/mole= 36.45 g/mole
- Na: 23 g/mole
- NaCl: 23 g/mole + 35.45 g/mole= 58.45 g/mole
- H₂: 2* 1 g/mole= 2 g/mole
Then, by stoichiometry of the reaction, the following amounts in grams of each of the compounds participating in the reaction react and are produced:
- HCl: 2 moles* 36.45 g/mole= 72.9 g
- Na: 1 mole* 23 g/mole= 23 g
- NaCl: 2 moles* 58.45 g/mole= 116.9 g
- H₂: 1 mole* 2 g/mole= 2 g
So, a rule of three applies as follows: if by stoichiometry, when reacting 72.9 grams of HCl 2 grams of H₂ are formed, when reacting 175 grams of HCl how much mass of H₂ will be formed?

mass of H₂= 4.8 g
<u><em>4.8 grams of H₂ will be produced if 175g of HCI are allowed to react completely with sodium</em></u>
An electron in the 3s orbital. The order of electron orbital energy levels starting from lowest to highest is as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.
Answer:
D.
Explanation:
The reaction is losing potential energy, which means that the reaction is losing that energy as heat. Exothermic is the loss of energy. Therefore it will be D.
Answer:
An inert gas is one that does not undergo chemical reactions
Noble gases refers to the right most group of the periodic table composed of helium, neon, argon, krypton, xenon, and radon. As you might have seen as an example in class, some noble gases can form chemical compounds, such as XeF4.
or to say:
Halogens and noble gases are two different groups of elements that can be seen on the periodic table. Halogens are found in group 17 and include fluorine, chlorine, bromine, iodine and astatine. Noble gases make up group 18, and include helium, neon, argon, krypton, xenon and radon.
Answer:
Lavoisier; Newlands; Moseley
Explanation:
In 1789, Antoine Lavoisier grouped the elements into gases, nonmetals, metals, and earths.
In 1865, John Newlands developed the Law of Octaves. He stated that "any given element will exhibit analogous behaviour to the eighth element following it in the table."
In 1914, Henry Moseley found a correlation between the X-ray wavelength of an element and its atomic number. He was then able to restructure the periodic table according to atomic numbers.