The velocity of penguin as he ends where he started was 0 m/s.
<h3>What is displacement?</h3>
Displacement is the length of straight line joining the initial and final position of the body.
Given is a penguin who waddled 8 m uphill before sliding back down to its friends in 2 seconds.
We know that the velocity is the rate of change of displacement with respect to time. Mathematically -
v = dx/dt
dx = v dt
∫dx = ∫v dt
Δx = vΔt
v = Δx/Δt
Now, the displacement of the penguin will be = Δx = 8 - 8 = 0
Then, its velocity will be -
v = 0/Δt = 0
Therefore, the velocity of penguin as he ends where he started was 0 m/s.
To solve more questions on kinematics, visit the link below-
brainly.com/question/27200847
#SPJ1
Answer:
Option (D)
Explanation:
Terrestrial planets refers to those four planets that are nearest to the sun and that lies within the asteroid belt. These planets are mainly composed of rocks or other metal objects that have a hard and resistant surface on it. They have a metal core that is molten (liquid) in nature, and atmosphere is relatively less dense, and also various geological features are present on it like the crater, volcanoes which can be observed with the help of satellites. The average densities of these planets is about four times the density of water. For example, the density of water is 1 g/cm³, whereas the density of earth is 5.5 g/cm³.
Thus, the correct answer is option (D).
Explanation:
It is known that electric field is responsible for creating electric potential. As a result, it depends only on the electric field and not on the magnitude of charge.
So, when a charge is increased by a factor of 2 then electric potential will remain the same. Since, expression to calculate the electric potential is as follows.
U = qV
Since, the electric potential is directly proportional to the charge. Hence, when 0.2
tends to replaced by 0.4
then charge is increased by a factor of 2. Hence, the electric potential energy is doubled.
Thus, we can conclude that if that charge is replaced by a +0.4 µC charge then electric potential stays the same, but the electric potential energy doubles.
Answer:
Explanation:
I think the answer is statement no 3.
Hope it helps.