The initial momentum of the system can be expressed as,

The final momentum of the system can be given as,

According to conservation of momentum,

Plug in the known expressions,

Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.
Plug in the known values,

Thus, the final velocity of second mass is 2.99 m/s.
Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg
add the numbers from the three sliders to determine that mass of an object
Answer:
The length of rod A will be <u>greater than </u>the length of rod B
Explanation:
We, know that the formula for final length in linear thermal expansion of a rod is:
L' = L(1 + ∝ΔT)
where,
L' = Final Length
L = Initial Length
∝ = Co-efficient of linear expansion
ΔT = Change in temperature
Since, the rods here have same original length and the temperature difference is same as well. Therefore, the final length will only depend upon the coefficient of linear expansion.
For Rod A:
∝₁ = 12 x 10⁻⁶ °C⁻¹
For Rod B:
∝₂ = β₂/3
where,
β₂ = Coefficient of volumetric expansion for rod B = 24 x 10⁻⁶ °C⁻¹
Therefore,
∝₂ = 24 x 10⁻⁶ °C⁻¹/3
∝₂ = 8 x 10⁻⁶ °C⁻¹
Since,
∝₁ > ∝₂
Therefore,
L₁ > L₂
So, the length of rod A will be <u>greater than </u>the length of rod B
Answer:
Fundamental frequency in the string will be 25 Hz
Explanation:
We have given length of the string L = 1.2 m
Speed of the wave on the string v = 60 m/sec
We have to find the fundamental frequency
Fundamental frequency in the string is equal to
, here v is velocity on the string and L is the length of the string
So frequency will be equal to 
So fundamental frequency will be 25 Hz