Answer:
-15 m/s
Explanation:
The computation of the velocity of the 4.0 kg fragment is shown below:
For this question, we use the correlation of the momentum along with horizontal x axis
Given that
Weight of stationary shell = 6 kg
Other two fragments each = 1.0 kg
Angle = 60
Speed = 60 m/s
Based on the above information, the velocity = v is



= -15 m/s
(1) The image of an object placed further from the lens than the focal point will be upside down and smaller than the object.
(2) When light rays reflect, they bounce back.
(3) Images formed by a concave lens will look magnified.
(4) When light rays enter a different medium, they bend.
<h3>
1.0 Object placed further from the lens than the focal point</h3>
The image of an object placed further from the lens than the focal point will be diminished and inverted.
Thus, the correct answer will be "upside down and smaller than the object".
<h3>2.0 What is reflection of light?</h3>
The ability of light to bounce back when it strike a hard surface is known as refection.
<h3>3.0 Image formed by concave lens</h3>
A concave lens is diverging lens is usually virtual, erect and magnified.
<h3>4.0 Refraction of light</h3>
The change in speed of light when it travels from medium to another medium is known as refraction. Refraction is also, the ability of light to bend around obstacles.
Learn more about reflection and refraction of light here: brainly.com/question/1191238
Answer:
C. crust, mantle, core
Explanation:
density increases as you travel from the crust to the inner core
the crust is on top
next is the mantle
and then the core
It means that you consider the elements as a list organized by atomic number, the property is seen to repeat over and over as you move through that list.
When two sides of a membrane are in contact with each other, the distribution of ions will alter as a result of the binding of a signal molecule to a ligand-gated ion channel.
<h3>
What is a ligand-gated ion channel?</h3>
Ligand-gated ion channels (LGICs) are membrane proteins that are structurally integral and feature a pore that permits the controlled passage of particular ions across the plasma membrane. The electrochemical gradient for the permeant ions drives the passive ion flux.
When a chemical ligand, such as a neurotransmitter, attaches to the protein, ligand-gated ion channels open. Changes in membrane potential cause voltage channels to open and close. When a receptor physically deforms, as in the case of pressure and touch receptors, mechanically-gated channels open.
Learn more about ligand-gated ion channel here:
brainly.com/question/15215628
#SPJ4