The dissolution of a solute in a solvent to form a solution usually occur in three steps, which are delta H1, delta H2 and delta H3.
For dissolving an ionic solid, the lattice energy, which is the energy that is holding the ionic particles in place correspond to DELTA H2 and it is the energy that must be conquered. The higher the charge in the ionic solid, the higher the lattice energy. The lattice energy must be overcome in order for the solid to dissolve.
Answer: hopefully this is right UwU
Explanation: The infrared spectrum of a sample is recorded by passing a beam of infrared light through the sample. When the frequency of the IR is the same as the vibrational frequency of a bond or collection of bonds, absorption occurs. Examination of the transmitted light reveals how much energy was absorbed at each frequency (or wavelength).
Answer:
4.28x10^24 molecules
Explanation:
From Avogadro's hypothesis, 1mole of any substance contains 6.02x10^23 molecules. From the above, we understood that 1mole of H2O also contains 6.02x10^23 molecules.
1mole of H2O = (2x1) + 16 = 2 + 16 = 18g
Now, if 18g of H2O contains 6.02x10^23 molecules,
Then 128g of H2O will contain = (128x 6.02x10^23) /18 = 4.28x10^24 molecules
Answer:
The strongest force that exists between molecules of Ammonia is <em>Hydrogen Bonding</em>.
Explanation:
Hydrogen Bond Interactions are those interactions which are formed between a partial positive hydrogen atom bonded directly to most electronegative atoms (i.e. F, O and N) of one molecule interacts with the partial negative most electronegative atom of another molecule.
Hence, in ammonia the nitrogen atom being more electronegative element than Hydrogen will be having partial negative charge and making the hydrogen atom partial positive. Therefore, the attraction between these partials charges will be the main force of interaction between ammonia molecules.
Other than Hydrogen bonding interactions ammonia will also experience dipole-dipole attraction and London dispersion forces.