Answer:
Current = 10 Amperes.
Explanation:
Given the following dat;
Quantity of charge, Q = 36 kilocoulombs (KC) = 36 * 1000 = 36000C
Time = 1 hour to seconds = 60*60 = 3600 seconds
To find the current;
Quantity of charge = current * time
Substituting in the equation
36000 = current * 3600
Current = 36000/3600
Current = 10 Amperes.
Length of the pipe = 0.39 m
Number of harmonics = 3
Now there are 3 loops so here we can say


now here at the center of the pipe it will form Node
we need to find the distance of nearest antinode
So distance between node and its nearest antinode will be


So the distance will be 6.5 cm
Answer:
Minimum number of photons required is 1.35 x 10⁵
Explanation:
Given:
Wavelength of the light, λ = 850 nm = 850 x 10⁻⁹ m
Energy of one photon is given by the relation :
....(1)
Here h is Planck's constant and c is speed of light.
Let N be the minimum number of photons needed for triggering receptor.
Minimum energy required for triggering receptor, E₁ = 3.15 x 10⁻¹⁴ J
According to the problem, energy of N number of photons is equal to the energy required for triggering, that is,
E₁ = N x E
Put equation (1) in the above equation.

Substitute 3.15 x 10⁻¹⁴ J for E₁, 850 x 10⁻⁹ m for λ, 6.6 x 10⁻³⁴ J s for h and 3 x 10⁸ m/s for c in the above equation.

N = 1.35 x 10⁵
Answer:
D) This is the correct answer
Explanation:
In this exercise the two ball loads are suspended by a thread.
To answer this exercise, let us remember that charges of the same sign repel and charges of a different sign attract.
Therefore, for the system to maintain equilibrium, the two charges must be of the same sign.
When examining the different proposals
A) in this case, as a sphere has no charge, there is no electric force and the induced charge is of the opposite sign, so the spheres attract each other
B) in this case there is an electric force, but being of a different sign, the force is attractive so the system is not in equilibrium
C) as the charges are of different magnitude the system does not have equal angles
D) This is the correct answer, since the charges have the same magnitude and are of the same sign, so the force is repulsive and is counteracted by the weight component
F_e = W sin θ