1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
15

a circular cylinder and isused to maintain a water depth of 4 m. That is, when the water depth exceeds 4 m, thegate opens slight

ly and lets the water flow under it. Determine the weight of the gate permeter of length
Physics
1 answer:
stiv31 [10]3 years ago
3 0

Answer:

  W / A = 39200 kg / m²

Explanation:

For this problem let's use the equilibrium equation of / newton

           F = W

Where F is the force of the door and W the weight of water

         W = mg

We use the concept of density

        ρ = m / V

        m = ρ V

The volume of the water column is

          V = A h

We replace

         W = ρ A h g

On the other side the cylinder cover has a pressure

          P = F / A

          F = P A

We match the two equations

       P A = ρ A h g

        P = ρ g h

        P = 39200 Pa

The weight of the water column is

       W  = 1000 9.8 4 A

       W / A = 39200 kg / m²

You might be interested in
Which of the following choices is NOT a common injury in sports?
hichkok12 [17]

Answer:

I would say B. Just because all the other options are very common in sports

Explanation:

5 0
3 years ago
Read 2 more answers
What is a formula unit​
Nana76 [90]

A formula unit is the empirical formula for an ionic compound. It is the lowest possible ratio of the cations and anions of a given ionic compound.

3 0
3 years ago
A 650-kg roller coaster starts from rest at the top of a 80 m hill.
Flura [38]

Answer:

or a roller coaster loop, if it were perfectly circular, we would have a minimum speed of vmin=√gR at the top of the loop where g=9.8m/s2 and R is the radius of the 'circle'. However, most roller coaster loops are actually not circular but more elliptical.

Explanation:

7 0
2 years ago
An open container holds ice of mass 0.555 kg at a temperature of -16.6 ∘C . The mass of the container can be ignored. Heat is su
s2008m [1.1K]

Answer: A. 23.59 minutes.

              B. 249.65 minutes

Explanation: This question involves the concept of Latent Heat and specific heat capacities of water in solid phase.

<em>Latent heat </em><em>of fusion </em>is the total amount of heat rejected from the unit mass of water at 0 degree Celsius to convert completely into ice of 0 degree Celsius (and the heat required for vice-versa process).

<em>Specific heat capacity</em> of a substance is the amount of heat required by the unit mass of a substance to raise its temperature by 1 kelvin.

Here, <u>given that</u>:

  • mass of ice, m= 0.555 kg
  • temperature of ice, T= -16.6°C
  • rate of heat transfer, q=820 J.min^{-1}
  • specific heat of ice, c_{i}= 2100 J.kg^{-1}.K^{-1}
  • latent heat of fusion of ice, L_{i}=334\times10^{3}J.kg^{-1}

<u>Asked:</u>

1. Time require for the ice to start melting.

2. Time required to raise the temperature above freezing point.

Sol.: 1.

<u>We have the formula:</u>

Q=mc\Delta T

Using above equation we find the total heat required to bring the ice from -16.6°C to 0°C.

Q= 0.555\times2100\times16.6

Q= 19347.3 J

Now, we require 19347.3 joules of heat to bring the ice to 0°C  and then on further addition of heat it starts melting.

∴The time required before the ice starts to melt is the time required to bring the ice to 0°C.

t=\frac{Q}{q}

=\frac{19347.3}{820}

= 23.59 minutes.

Sol.: 2.

Next we need to find the time it takes before the temperature rises above freezing from the time when heating begins.

<em>Now comes the concept of Latent  heat into the play, the temperature does not starts rising for the ice as soon as it reaches at 0°C it takes significant amount of time to raise the temperature because the heat energy is being used to convert the phase of the water molecules from solid to liquid.</em>

From the above solution we have concluded that 23.59 minutes is required for the given ice to come to 0°C, now we need some extra amount of energy to convert this ice to liquid water of 0°C.

<u>We have the equation:</u> latent heat, Q_{L}= mL_{i}

Q_{L}= 0.555\times334\times10^{3}= 185370 J

<u>Now  the time required for supply of 185370 J:</u>

t=\frac{Q_{L}}{q}

t=\frac{185370}{820}

t= 226.06 minutes

∴ The time it takes before the temperature rises above freezing from the time when heating begins= 226.06 + 23.59

= 249.65 minutes

8 0
3 years ago
An object is projected horizontally at 14.1 m/s from the top of a 195.0 meter cliff.
Roman55 [17]

What does a physical map show?

the names of countries, states, and cities

the history of an area

the geographical features of an area

the rest stops and restaurants in an area

7 0
3 years ago
Other questions:
  • Feng and Isaac are riding on a merry-go- round. Feng rides on a horse at the outer rim of the circular platform, twice as far fr
    14·1 answer
  • A piece of wood is floating in a bathtub. A second piece of wood sits on top of the first piece, and does not touch the water. I
    11·1 answer
  • In thinking of an inductor as a circuit element, it is helpful to consider its limiting behavior at high and low frequencies. At
    12·1 answer
  • Which often results from great variations in a habitat’s abiotic conditions?
    9·2 answers
  • 4. An airplane normally flies at 240 km/hr. If it experiences a 80 km/hr tailwind
    5·1 answer
  • The acceleration of gravity on the
    9·1 answer
  • A crossbow is fired horizontally off a cliff with an initial velocity of 15 m/s. If the arrow takes 4s to hit the ground, what i
    13·1 answer
  • a car accelerate at 9 m/s squared. Assuming the car starts from rest how far will it travel in 10 seconds
    12·1 answer
  • A block with a mass of 3.7 kg slides with a speed of 2.2 m/s on a frictionless surface. The block runs into a stationary spring
    8·1 answer
  • 4 This giraffe walks at a speed of 2 meters per second Where will the giraffe be 5 seconds from now? (The trees are 5 meters apa
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!