<h3><u>Answer</u>;</h3>
1600 years
<h3><u>Explanation</u>;</h3>
- Half life is the time taken for a radioactive isotope to decay by half of its original amount.
- We can use the formula; N = O × (1/2)^n ; where N is the new mass, O is the original amount and n is the number of half lives.
- A sample of radium-226 takes 3200 years to decay to 1/4 of its original amount.
Therefore;
<em>1/4 = 1 × (1/2)^n</em>
<em>1/4 = (1/2)^n </em>
<em>n = 2 </em>
Thus; <em>3200 years is equivalent to 2 half lives.</em>
<em>Hence, the half life of radium-226 is 1600 years</em>
Answer:
x component 3.88 y- component 14.488
Explanation:
We have given a vector A which has a magnitude of 15 m/sec which is at 75° counter-clock wise ( anti-clock wise) from x -axis which is clearly shown in bellow figure
Now x-component will be 15 cos75°=3.8822 ( as it makes an angle of 75° with x-axis )
y- component will be 15 sin 75°=14.488
For verification the resultant of x and y component should be equal to 15
So 
Only within the same technology. / / /
If both of the bulbs you're comparing are incandescent, or both fluorescent, or both CFL, or both LED, then the one that uses more power is brighter. But a CFL with the same brightness as an incandescent bulb uses less power, and an LED bulb with the same brightness as both of those uses less power than either of them.
The answer is B.
A cannot be the answer is melting is a physical change. No chemical reaction took place.
B is the answer as it is a EXOTHERMIC REACTION so heat will be given off.
C cannot be the answer as dissolving is basically atoms becoming ions, not a chemical reaction whereby a reactant reacts with another reactant to form a product.
D cannot be the answer. Same reason as for why A is not the answer.
Cheers.
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.