Answer:
1) In a concave mirror parallel rays falling on it converges at F and 2F.
Explanation:
Spherical mirrors can be used for magnification of images. There are basically two types of spherical mirrors and they are converging mirror and diverging mirrors. The converging mirrors are also termed as concave mirrors and its basic work is to converge or combine light rays coming from a larger distance to a single point. Mostly the light beams falling parallel to the principle axis of the concave mirror will be acting as parallel rays. And when these parallel rays fall on the mirror, the converging point can be the focal point of the mirror.
Thus the location of converging point in concave mirrors will be based on the position or distance of object from the mirror. If the object distance is very far from the twice the focal length distance of mirror, then the converging point will be the focal point or F. And if the object is placed slightly greater than twice the distance of focal point, then the image will be obtained at 2F. But the parallel beams will be converging at F and 2F.
Explanation:
It is given that,
Wavelength of red laser light, 
The second order fringe is formed at an angle of, 
For diffraction grating,

, n = 2


The wavelength λ of light that creates a first-order fringe at 22 is given by :




Hence, this is the required solution.
To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:



The angular displacement is given as the form:
In the equlibrium we have to
and in the given position we have to

Derived the expression we will have the equivalent to angular velocity

Replacing,

Finally

Therefore the maximum angular displacement is 9.848°
Answer:
what do you mean by this?
Explanation: