Answer:
i think the answer would be:Jonas’ brother gets out of the cab of the truck and sits in the back of the truck with the furniture. With less mass, they should be able to push the truck to the gas station.
Explanation:
v₀ = initial speed of the object = 8 meter/second
v = final speed of the object = 16 meter/second
t = time taken to increase the speed = 10 seconds
d = distance traveled by the object in the given time duration = ?
using the kinematics equation
d = (v + v₀) t/2
inserting the above values in the above equation
d = (16 + 8) (10)/2
d = 120 meter
C. 10 m/s
You divide 1000 m by 100 s.
1000/100 to find the velocity
Answer:
Mass of bike = 38 kg.
Explanation:
Kinetic energy is given by the expression,
, where m is the mass and v is the velocity.
Here speed of child riding bike = 6 m/s
Mass of child = 30 kg
Total kinetic energy = 1224 J
Let the mass of bike be, m kg
So, total mass of child and bike = (m + 30) kg
Substituting,

So, mass of bike = 38 kg.
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed