Answer:
The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Explanation:
Given that,
Wavelength = 400 nm
Energy 
We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal
Using formula of energy


Put the value into the formula



Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Answer:the one with the smaller radius has the highest centripetal force
Explanation:
As per the third law of Newton, the force exerted by the boat over the student is equal in magnitude to the force that the student exerted on the boat.
So, calculate the force on the student using the second law of Newton, Force = mass * acceleration.
Force on the student = 60 kg * 2.0 m/s^2 = 120 N.
=> horizontal force exerted by the student on the boat = 120 N
Answer: option d. 120 N. toward the back of the boat.
Of course it is toward the back because that is where the student jumped from..
Answer:
True we need greenhouses for carbon dioxide
Missing detail in the text: total voltage of the circuit

Missing figure: https://www.physicsforums.com/attachments/prob-24-68-jpg.190851/
Solution:
1) The energy stored in a circuit of capacitors is given by

where

is the equivalent capacitance of the circuit. We can find the value for

by using

and the energy of the system,


2) Then, let's calculate the equivalente capacitance of C1 and C2. The two capacitors are in series, so their equivalente capacitance is given by

from which we find

3) Then let's find

, the equivalent capacitance of

and C3.

is in series with C4, therefore we can write

Since we already know

and

, we find

4) Finally, we can find

, because it is in parallel with

, and the equivalent capacitance of the two must be equal to

:

So, using

and

, we find