1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
14

A huge tank of glycerine with a density of 1.260 g/cm3 is vertically stationed on a platform which is 15 m above the ground. The

glycerine level is 5 m above the base of the tank. A small hole 4 mm in diameter has formed in the base of the tank. Both the hole and the top of the tank are open to the air.
A) How many cubic meters of glycerine per second is this tank losing? (hint: the speed of the flow at the top of the tank is pretty small and negligible
B) How fast is the water from the hole moving just as it reaches the ground?
Physics
1 answer:
EleoNora [17]3 years ago
4 0

Answer:

The tank is losing 4.976*10^{-4}  m^3/s

v_g = 19.81 \ m/s

Explanation:

According to the Bernoulli’s equation:

P_1 + 1 \frac{1}{2} \rho v_1^2 + \rho gh_1 = P_2 +  \frac{1}{2}  \rho v_2^2 + \rho gh_2

We are being informed that both the tank and the hole is being exposed to air :

∴ P₁ = P₂

Also as the tank is voluminous ; we take the initial volume  v_1 ≅ 0 ;

then v_2 can be determined as:\sqrt{[2g (h_1- h_2)]

h₁ = 5 + 15 = 20 m;

h₂ = 15 m

v_2 = \sqrt{[2*9.81*(20 - 15)]

v_2 = \sqrt{[2*9.81*(5)]

v_2= 9.9 \ m/s  as it leaves the hole at the base.

radius r = d/2  = 4/2 = 2.0 mm

(a) From the law of continuity; its equation can be expressed as:

J = A_1v_2

J = πr²v_2    

J =\pi *(2*10^{-3})^{2}*9.9

J =1.244*10^{-4}  m^3/s

b)

How fast is the water from the hole moving just as it reaches the ground?

In order to determine that; we use the relation of the velocity from the equation of motion which says:

v² = u² + 2gh ₂

v² = 9.9² + 2×9.81×15

v² = 392.31

The velocity of how fast the water from the hole is moving just as it reaches the ground is : v_g = \sqrt{392.31}

v_g = 19.81 \ m/s

You might be interested in
The total mass of the train and its passengers is 750000kg. The train is traveling at a speed of 84m/s. The driver applies the b
fiasKO [112]

Answer:

|F| = 393750  N

Explanation:

Given that,

Total mass of the train, m = 750000 kg

Initial speed, u = 84 m/s

Final speed, v = 42 m/s

Time, t = 80 s

We need to find the net force acting on the train. The formula for force is given by :

F = ma

F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{750000\times (42-84)}{80}\\\\F=-393750\ N

So, the magnitude of net force is 393750  N.

4 0
3 years ago
A 5.00 kg rock whose density is 4300 kg/m3 is suspended by a string such that half of the rock's volume is under water. You may
12345 [234]

Answer:

The tension on the string is  T  =  43.302 \ N

Explanation:

From the question we are told that

    The mass of the rock is m_r = 5.00 \ kg =  5000 \ g

       The density of the rock is \rho  =  4300 \ kg/m^3 =  4.3 g/dm^3

       

Generally the volume of the rock is mathematically evaluated as

          V    =  \frac{m_r}{\rho}

substituting values

        V    =  \frac{5000}{4.3}

       V    =  1162.7 \  dm^3

The volume of the rock immersed in water is

      V_w = \frac{V}{2}  

substituting values

     V_w = \frac{1162.7 }{2}

     V_w = 581.4 \ dm^3

mass of water been displaced by the this volume is

     m_w  = V_w     According to Archimedes principle

=>   m_w =  581.4 \ g

     m_w =  0.5814 \ kg

The weight of the water displace is  

      W _w =  m_w  * g

      W _w =  0.5814  * 9.8

      W _w = 5.698 \ N

The actual weight of the rock is  

      W_r  =  m_r * g

     W_r  =  5.0 *  9.8

     W_r  =  49.0 \ N

The tension on the string is

       T  = W_r - W_w

substituting values

       T  = 49.0 -  5.698

       T  =  43.302 \ N

4 0
3 years ago
Consider a 2.54-cm-diameter power line for which the potential difference from the ground, 19.6 m below, to the power line is 11
tiny-mole [99]

Answer:

The line charge density is 1.59\times10^{-4}\ C/m

Explanation:

Given that,

Diameter = 2.54 cm

Distance = 19.6 m

Potential difference = 115 kV

We need to calculate the line charge density

Using formula of potential difference

V=EA

V=\dfrac{\lambda}{2\pi\epsilon_{0}r}\times\pi r^2

\lambda=\dfrac{V\times2\epsilon_{0}}{r}

Where, r = radius

V = potential difference

Put the value into the formula

\lambda=\dfrac{115\times10^{3}\times2\times8.8\times10^{-12}}{1.27\times10^{-2}}

\lambda=1.59\times10^{-4}\ C/m

Hence, The line charge density is 1.59\times10^{-4}\ C/m

4 0
3 years ago
There is a 120 V circuit in a house that is a dedicated line for the dishwasher, meaning the dishwasher is the only resistor on
Fantom [35]

Answer:

The answer is  6.67 Ohms

Explanation:

5 0
3 years ago
Read 2 more answers
which statement is true about wind energy? A) It is clean and non-polluting. B) It is only effective near water. C) It is costly
nikitadnepr [17]
I think it would be option A . 
5 0
3 years ago
Read 2 more answers
Other questions:
  • Energy is the ability to
    6·2 answers
  • How does the vacuum between the inner and outer walls of a thermos bottle limit energy loss through conduction and convection?
    11·1 answer
  • Select the correct answer from each drop-down menu.
    8·2 answers
  • You swing a 2.2 kg stone in a circle with radius 75 cm. At what speed do you need to swing it so its
    8·1 answer
  • A satellite orbiting Earth at an orbital radius r has a velocity v. which represents the velocity if the satellite is moved to a
    6·1 answer
  • A bowler throws a bowling ball of radius R = 11 cm along a lane. The ball slides on the lane with initial speed <img src="https:
    6·1 answer
  • Which of the following is a property of all periodic waves?
    6·1 answer
  • Two tuning forks having frequencies of 460 and 464 Hz are struck simultaneously. What average frequency will you hear, and what
    11·1 answer
  • Thermograms are infrared photograms that show emission of infrared radiation emitted from objects. If you lived in a cold climat
    5·1 answer
  • What is the golden rule of lightning safety? (A.Don't stand under trees). (B.Avoid using electronics,)(C.Stay avvay from open sp
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!