Answer:
sin 2θ = 1 θ=45
Explanation:
They ask us to prove that the optimal launch angle is 45º, for this by reviewing the parabolic launch equations we have the scope equation
R = Vo² sin 2θ / g
Where R is the horizontal range, Vo is the initial velocity, g the acceleration of gravity and θ the launch angle. From this equation we see that the sine function is maximum 2θ = 90 since sin 90 = 1 which implies that θ = 45º; This proves that this is the optimum angle to have the maximum range.
We calculate the distance traveled for different angle
R = vo² Sin (2 15) /9.8
R = Vo² 0.051 m
In the table are all values in two ways
Angle (θ) distance R (x)
0 0 0
15 0.051 Vo² 0.5 Vo²/g
30 0.088 vo² 0.866 Vo²/g
45 0.102 Vo² 1 Vo²/g
60 0.088 Vo² 0.866 Vo²/g
75 0.051 vo² 0.5 Vo²/g
90 0 0
See graphic ( R Vs θ) in the attached ¡, it can be done with any program, for example EXCEL
Answer
given,
mass of ball, m = 57.5 g = 0.0575 kg
velocity of ball northward,v = 26.7 m/s
mass of racket, M = 331 g = 0.331 Kg
velocity of the ball after collision,v' = 29.5 m/s
a) momentum of ball before collision
P₁ = m v
P₁ = 0.0575 x 26.7
P₁ = 1.535 kg.m/s
b) momentum of ball after collision
P₂ = m v'
P₂ = 0.0575 x (-29.5)
P₂ = -1.696 kg.m/s
c) change in momentum
Δ P = P₂ - P₁
Δ P = -1.696 -1.535
Δ P = -3.231 kg.m/s
d) using conservation of momentum
initial speed of racket = 0 m/s
M u + m v = Mu' + m v
M x 0 + 0.0575 x 26.7 = 0.331 x u' + 0.0575 x (-29.5)
0.331 u' = 3.232
u' = 9.76 m/s
change in velocity of the racket is equal to 9.76 m/s
The answer for this question is Control Variable because it doesn’t change throughout the experiment.
Explanation:
To determine your total daily calorie needs, multiply your BMR by the appropriate activity factor, as follows: If you are sedentary (little or no exercise) : Calorie-Calculation = BMR x 1.2. If you are lightly active (light exercise/sports 1-3 days/week) : Calorie-Calculation = BMR x 1.375.
<em><u>HAPPY TO HELP</u></em>
B) not work ,because the water would freeze