The temperature increase of a substance is T=Q/m*c, where m is the mass, Q is the energy absorbed and c is the specific heat. So you can conclude that if the lead gets to a higher temperature, it must have a lower specific heat
Answer:
answer is 0.1428
Explanation:
Data:- vf=5.0 , vi=0.0 , t=35 , a=? so appling first eq of motion vf=vi+at we have to find a=vf-vi/t , a=5.0-0.0/35 , a=5/35 ,a=0.1428m/sec²
Electric Forces. ... Just like objects that have mass exert gravitational forces on each other, objects that are charged will also exert electric forces on each other. The electric force is directly proportional to the charge of the two objects and inversely proportional to the distance between them squared.
This is the upthrust on an object which is placed inside a fluid
This force act upwards and always push upwards
so the correct answer is given as
D. A force within a fluid that pushes upward
this force is always due to pressure difference at two levels of
at lower level since pressure is more that is why the force is upwards and this upthrust is known as Buoyancy
Answer:
8000J
Explanation:
The kinetic energy of the car lost during breaking are converted to thermal energy and are gained by the brakes.
Kinetic energy loss by car = thermal energy gained by brakes.
∆K.E = ∆T.E ....1
The Kinetic energy loss by car can be expressed as;
∆K.E = K.E1 - K.E2
Initial K.E = K.E1 = 10000J
Final K.E = K.E2 = 2000J
∆K.E= 10000J - 2000J = 8000J
From equation 1,
∆K.E = ∆T.E
∆T.E = 8,000J
thermal energy gain by brakes = 8,000J