1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
3 years ago
12

What is the answer? Explain best and I will mark brainliest!

Physics
2 answers:
motikmotik3 years ago
7 0
The best answer Would be B. None of the other Answers would make sense.
iVinArrow [24]3 years ago
5 0
I would say B because it is near the ocean which can cause a tsunami but also because of the wind coming from the ocean (it might cause hurricanes and lots of storms) I’m not sure though but that’s what I think makes sense. Good Luck!
You might be interested in
Which of the following nuclei is most stable based on its binding energy?
Anettt [7]
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
4 0
3 years ago
a hammer drops from a height of 8 meters. calculate the speed with which it hits the ground. show work
ioda

Answer:

12.5 m/s

Explanation:

The motion of the hammer is a free fall motion, so a uniformly accelerated motion, therefore we can use the following suvat equation:

v^2-u^2=2as

Where, taking downward as positive direction, we have:

s = 8 m is the displacement of the hammer

u = 0 is the initial velocity (it is dropped from rest)

v is the final velocity

a=g=9.8 m/s^2 is the acceleration of gravity

Solving the equation for v, we find the final velocity:

v=\sqrt{u^2+2as}=\sqrt{0+2(9.8)(8)}=12.5 m/s

So, the final speed is 12.5 m/s.

3 0
3 years ago
A laser beam with a frequency of 180 Hz forms an 8 m standing wave with 10 nodes.
DIA [1.3K]

Answer:33

Explanation:

F = frequency

N =  Node count

w = wave lenght

v = wave velocity

L = distance wave traveled

First find wave length of laser

w = (2/(N))*(L)

w = (2/(10))*(8)

w = 1.6

then using (w), find velocity

V =  (w)(F)

V = (1.6)*(108)

V = 288

Plug in V and the new frequency to solve for new node count

F = NV/2L

(600) = (N)*(288) / 2 * (8)

(N) = 33.33

there are 33 nodes

8 0
3 years ago
A copper wire and a tungsten wire of the same length have the same resistance. What is the ratio of the diameter of the copper w
spayn [35]

Answer:

Therefore the ratio of diameter of the copper to that of the tungsten is

\sqrt{3} :\sqrt{10}

Explanation:

Resistance: Resistance is defined to the ratio of voltage to the electricity.

The resistance of a wire is

  1. directly proportional to its length i.eR\propto l
  2. inversely proportional to its cross section area i.eR\propto \frac{1}{A}

Therefore

R=\rho\frac{l}{A}

ρ is the resistivity.

The unit of resistance is ohm (Ω).

The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m

The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m

For copper:

A=\pi r_1^2 =\pi (\frac{d_1}{2} )^2

R_1=\rho_1\frac{l_1}{\pi(\frac{d_1}{2})^2 }

\Rightarrow (\frac{d_1}{2})^2=\rho_1\frac{l_1}{\pi R_1 }......(1)

Again for tungsten:

R_2=\rho_2\frac{l_2}{\pi(\frac{d_2}{2})^2 }

\Rightarrow (\frac{d_2}{2})^2=\rho_2\frac{l_2}{\pi R_2 }........(2)

Given that R_1=R_2   and    l_1=l_2

Dividing the equation (1) and (2)

\Rightarrow\frac{ (\frac{d_1}{2})^2}{ (\frac{d_2}{2})^2}=\frac{\rho_1\frac{l_1}{\pi R_1 }}{\rho_2\frac{l_2}{\pi R_2 }}

\Rightarrow( \frac{d_1}{d_2} )^2=\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}   [since R_1=R_2   and    l_1=l_2]

\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}}

\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{3}{10}}

\Rightarrow d_1:d_2=\sqrt{3} :\sqrt{10}

Therefore the ratio of diameter of the copper to that of the tungsten is

\sqrt{3} :\sqrt{10}

8 0
3 years ago
Important minerals such as copper are found in what?
adoni [48]
It can be found in granitic and basaltic rock.
3 0
3 years ago
Other questions:
  • What is the phase ϕ(x,t) of the wave? Express the phase in terms of one or more given variables (A, k, x, t, and ω) and any need
    6·1 answer
  • 1 question 20points<br> How is frequency related to the sound we here
    13·1 answer
  • A can of sardines is made to move along an x axis from x = 0.47 m to x = 1.20 m by a force with a magnitude given by F = exp(–8x
    11·1 answer
  • what affect does traveling with or against the currents such as the gulf stream have on the time it takes for ships to cross the
    12·1 answer
  • The mass of a golf ball is 45.9 g . if it leaves the tee with a speed of 62.0 m/s , what is its corresponding wavelength?
    5·1 answer
  • How long does a player sit out of a game of handball for committing a second or third foul?
    8·1 answer
  • 6. The momentum of a 30.0 g bird with a speed of 12 m.s-1 is 0.36 kg.m.s-1. What will be its momentum 12s later if a constant .0
    11·1 answer
  • A 698 kg car at rest rolls down a hill from a starting height of 7.9 m. What is the final speed of the car at the bottom of the
    13·1 answer
  • A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 65.5-gram mass is attached at the 21.0-cm
    13·1 answer
  • A car drives 24 meters to the left in three seconds what is the velocity of the car?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!