- The potential difference between two locations in an electric circuit is measured using a voltmeter.
- If the electricity passes through the voltmeter it shows deflection.
<h3>What is the purpose of a voltmeter?</h3>
- A voltage meter, usually referred to as a voltmeter, is a device that measures the voltage, or potential difference, between two points in an electrical or electronic circuit.
- volts is the unit of voltmeter(volts, millivolts, kilovolts)
<h3>What is the explanation for the link between current and voltage?</h3>
- Ohm's law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperatures remain constant.
<h3>What is ohm's law in circuit?</h3>
- V = IR, where V is voltage, I is current, and R is resistance, is known as Ohm's Law.
- If you know the voltage of the battery in the circuit and how much resistance is in the circuit, you may use Ohm's Law to identify properties of a circuit, such as how much current is flowing through it.
To learn more about current and voltage visit:
brainly.com/question/10254698
#SPJ4
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
If he keeps that pace he will be at the 34 yard line
Answer:

Explanation:
As we know that magnitude of two vectors is given as

here we know that
A = magnitude of vector A
B = magnitude of vector B
= angle between two vectors
so here we know that
A = 30 units
B = 40 units
angle = 90 degree
so we have


