If wy is congruent to xy, then from w to y is equal to the distance between x and y. According to the figure, both distances are 3m-4 each. Therefore the perimeter is the sum of the three sides, namely:

Solving for m:




Finally:
<span>wx is the distance </span>
1/6 of the muffins is 3 muffins with nuts. So you multiply 3 by 6 to get 18 muffins in all.
Answer:
1) B. -2 hours per person
2) C. 3.60 per pound
Step-by-step explanation:
1)
We can make a slope triangle connecting the points (4, 12) and (10,0)
We get -12/6, or -2 as our slope & final answer
2)
You can do x/y to find the unit rate for this one, or in this case 18/5 = 3.6
<h3>
Answer:</h3>
- <u>20</u> kg of 20%
- <u>80</u> kg of 60%
<h3>
Step-by-step explanation:</h3>
I like to use a little X diagram to work mixture problems like this. The constituent concentrations are on the left; the desired mix is in the middle, and the right legs of the X show the differences along the diagonal. These are the ratio numbers for the constituents. Reducing the ratio 32:8 gives 4:1, which totals 5 "ratio units". We need a total of 100 kg of alloy, so each "ratio unit" stands for 100 kg/5 = 20 kg of constituent.
That is, we need 80 kg of 60% alloy and 20 kg of 20% alloy for the product.
_____
<em>Using an equation</em>
If you want to write an equation for the amount of contributing alloy, it works best to let a variable represent the quantity of the highest-concentration contributor, the 60% alloy. Using x for the quantity of that (in kg), the amount of copper in the final alloy is ...
... 0.60x + 0.20(100 -x) = 0.52·100
... 0.40x = 32 . . . . . . . . . . .collect terms, subtract 20
... x = 32/0.40 = 80 . . . . . kg of 60% alloy
... (100 -80) = 20 . . . . . . . .kg of 20% alloy