Answer:
You are looking for expected peaks in absorption spectra founded on structure of desired product, respectively on bound in desired compound. Every bond absorb specific energy from radiation which wavelength match to IR spectrum of light. Result of energy absorption is vibration of bond and bonded atoms (if they are not too heavy).That absorbed energy is seen as a peak in absorption spectra. These peaks are specific for each bound so you need to find peaks that mach to bounds in your desired compound and in that matter you can identify your compound.
In nuclear magnetic resonance you are looking for peaks specific for atoms in your desired compound (H or C atoms). When external magnetic field is applied, atom goes in higher energy state. When atoms goes "relaxing", it releasing energy that mach energy gap from relaxed end excited state. That energy is detected on nuclear magnetic resonance spectra and it depends on neighbor atom so you can determine the position of atoms and identify structure of desired compound.
For better results it is the best to combine these two methods.
Explanation:
The correct answer is a metal atom forms a cation, and a nonmetal atom forms an anion. This is because metals are less electronegative than nonmetals and will therefore give electrons to nonmetals. Atoms that give up electrons will have a positive charge therefore becoming a cation while atoms that accept electrons will have a negative charge therefore becoming an anion.
Ions that have the same charge can't be attracted to each other since it takes a positive and negative charge to cause attractive forces.
A less electronegative atom will transfer electrons to a more electronegative atom.
A metal (cation) can pull electrons from another metal (not an ion) but that does not form an attractive force between the two metals (You will learn more about this when you go over reduction potentials, redox reactions, and electrochemistry).
I hope this helps. Let me know if anything is unclear.
Answer:
<u>C) 4</u>
Explanation:
<u>The reaction</u> :
- C (s) + 2H₂ (g) ⇒ CH₄ (g)
12g 4g 16g
Hence, based on this we can say that : <u>2 moles of hydrogen gas are needed to produce 16g of methane.</u>
<u />
<u>For 32g of methane</u>
- Number of moles of H₂ = 32/16 × 2
- Number of moles of H₂ = <u>4</u>
Answer:
A. it contains a lot of matter
Answer:
That is a compound. If it was an element it would either just be Na or Cl.