Answer:
7.5 gm left
Explanation:
Bismuth-210 has a half life of 5 days
15 days is 15/5 = 3 half lives
since half the amount is left in 5 days or 1 half life
(1/2) x (1/2) x (1/2) the staring amount would be left in
3 half lives. so 1/8 is left
(1/8) x 60.0 = 7.5 gm left
Answer:
a) ppm
b) ppm
c) ppb
d) ppt
e) ppb
Explanation:
a) You know that 1000 g are 1 kg, and 1000 kg are 1 ton, so (1000)*(1000) g are 1 ton, so 1,000,000 grams are one ton.
b) 1000 mg are 1 g, and 1000 g are 1 liter, so 1,000,000 grams are one liter.
c) You know that 1000 ug are 1 mg, so with the b), we just need to multiply the answer by 1000, so 1,000,000,000 ug are 1 liter.
d) The same as c, 1000 ng are 1 mg. So we are talkinf of ppt.
e) 1000 mg are 1 g. And 1000 g are 1 kg, then 1000 kg are one ton. So 1,000,000,000 mg are one ton.
Answer:
If the electronegativity difference between bonded atoms are too much high ionic bonds are formed if the electronegativity diference is 0.4 or less than 0.4 non polar covalnet bond formed the difference greater than 0.4 polar covalent bond formed.
Explanation:
Ionic bond:
It is the bond which is formed by the transfer of electron from one atom to the atom of another element.
Both bonded atoms have very large electronegativity difference. The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.
For example:
Sodium chloride is ionic compound. The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion.
Covalent bond:
It is formed by the sharing of electron pair between bonded atoms.
The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
The chemical equation is unbalanced and synthesized.
<h3>
</h3><h3>
What is a chemical equation?</h3>
A chemical equation is described as the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.
In a chemical equation, the reactant entities are given on the left-hand side and the product entities is shown on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that indicates towards the products to show the direction of the reaction.
We can conclude that in the chemical equation shown is unbalanced because both amounts of the individual elements and compounds do not reflect on the reactant and product side.
Learn more about chemical equations at: brainly.com/question/11231920
#SPJ1
The complete question is below:
After learning about the law of conservation of mass, Sammy became interested in balancing equations. He knew that the symbol for aluminum was Al and silver tarnish was Ag2S. He also knew that mixing the two chemicals yielded pure silver, or Ag, in an aluminum sulfide solution. Here is the equation showing this reaction:
3 Ag2S + 2 Al → 6 Ag + Al2S3
This equation is (synthesis / unbalanced / replacement / balanced), and it represents a(n) (unbalanced / balanced / synthesized / replaced) chemical reaction.
answer choices:
Answer:
When <em>a scientist on Earth drops a hammer and a feather at the same time an astronaut on the moon drops a hammer and a feather, the result</em> expected is that <em>the hammer hits the ground before the feather on Earth, and the hammer and feather hit at the same time on the moon (option D).</em>
Explanation:
In the abscence of atmosphere (vacuum), the objects fall in free fall. This is, the only force acting on the objects is the gravitational pull, which is directed vertlcally downward.
Under such absecence of air, the equations that rules the motion are:
- V = Vo + gt
- d = Vo + gt² / 2
- Vf² = Vo² + 2gd
As you see, all those equations are independent of the mass and shape of the object. This explains why <em>when an astronaut on the moon drops a hammer and a feather at the same time</em>, <em>the hammer and feather hit at the same time on the moon</em>, a space body where the gravitational attraction is so small (approximately 1/6 of the gravitational acceleration on Earth) that does not retain atmosphere.
On the other hand, the air (atmosphere) present in Earth will exert a considerable drag force on the feather (given its shape and small mass), slowing it down, whereas, the effect of the air on the hammer is almost neglectable. In general and as an approximation, the motion of the heavy bodies that fall near the surface is ruled by the free fall equations shown above, so, <em>the result </em>that is<em> expected when a scientist on Earth drops a hammer and a feather at the same time is that the hammer hits the ground before the feather</em>.