C.
Evaporation
Condensation
Precipitation
Answer : The energy removed must be, -67.7 kJ
Solution :
The process involved in this problem are :

The expression used will be:
![\Delta H=[m\times c_{p,g}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Bm%5Ctimes%20c_%7Bp%2Cg%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2Bm%5Ctimes%20%5CDelta%20H_%7Bvap%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released by the reaction = ?
m = mass of benzene = 125 g
= specific heat of gaseous benzene = 
= specific heat of liquid benzene = 
= enthalpy change for vaporization = 
Molar mass of benzene = 78.11 g/mole
Now put all the given values in the above expression, we get:
![\Delta H=[125g\times 1.06J/g.K\times (353.0-(425.0))K]+125g\times -434.0J/g+[125g\times 1.73J/g.K\times (335.0-353.0)K]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B125g%5Ctimes%201.06J%2Fg.K%5Ctimes%20%28353.0-%28425.0%29%29K%5D%2B125g%5Ctimes%20-434.0J%2Fg%2B%5B125g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28335.0-353.0%29K%5D)

Therefore, the energy removed must be, -67.7 kJ
The yield of lithium chloride is 1.92 grams.
Option D.
<h3><u>Explanation:</u></h3>
In this reaction, we can see that 1 mole of lithium hydroxide reacts with 1 mole of potassium chloride to produce 1 mole of lithium chloride and 1 mole of potassium hydroxide.
Molecular weight of lithium hydroxide is 24.
Molecular weight of lithium chloride is 42.5.
So 24 grams of lithium hydroxide produces 42.5 grams of lithium chloride.
So, 20 grams of lithium hydroxide produces
grams =11. 29 grams of lithium chloride.
But this is when the yield is 100%.
But yield is 17%.
So the yield is 1.92 grams of lithium chloride.
Answer:
the abbreviation form of full name is called symbol.
the smallest unit of cimpound is called molecule.