Steel is a mixture of iron and carbon fused together with one or more other metals or nonmetals. Because steel is a mixture rather than a chemical compound, steel does not have a set chemical compound formula.
Answer:
In case of low-mass stars,the outer layers of the low mass stars are expelled as the core collapses such that the outer layers form a planetary nebula.
Explanation:
In case of low-mass stars,the outer layers of the low mass stars are expelled as the core collapses such that the outer layers form a planetary nebula. The core remains as a white dwarf and finally become a black dwarf as it cools down. A low mass star consumes its core hydrogen and turns it into helium over its lifetime.
Answer:
The correct option is;
Group 12
Explanation:
A metallic element that is shiny and silver colored that can exist in the +1 and +2 ionic states and which forms a bright red compound with sulfur is mercury, Hg
The compound formed between mercury and silver is one of the earliest synthetic compound also known as vermilion and cinnabar. The bright red pigment of the HgS is used widely and is one of the most favorite pigment found in medieval European outstanding works of arts and in Chinese decorated wares made of lacquer as well as in mesoAmerica.
Answer:
14 mL
Explanation:
To prepare a solution by a concentrated solution, we must use the equation:
C1xV1 = C2xV2, where <em>C</em> is the concentration, <em>V</em> is the volume, 1 is the initial solution and 2 the final solution.
The final solution must have 2 mL and a concentration of 350 pg/mL, and the initial solution has a concentration of 50 pg/mL.
Then:
50xV1 = 350x2
50xV1 = 700
V1 = 700/50
V1 = 14 mL
1 mole of any substance contains 6.022 × 1023 particles.
⚛ 6.022 × 1023 is known as the Avogadro Number or Avogadro Constant and is given the symbol NA
N = n × NA
· N = number of particles in the substance
· n = amount of substance in moles (mol)
· NA = Avogardro Number = 6.022 × 10^23 particles mol-1
For H2O we have:
2 H at 1.0 each = 2.0 amu
1 O at 16.0 each = 16.0 amu
Total for H2O = 18.0 amu, or grams/mole
It takes 18 grams of H2O to obtain 1 mole, or 6.02 x 1023 molecules of water. Think about that before we answer the question. We have 25.0 grams of water, so we have more than one mole of water molecules. To find the exact number, divide the available mass (25.0g) by the molar mass (18.0g/mole). Watch how the units work out. The grams cancel and moles moves to the top, leaving moles of water. [g/(g/mole) = moles].
Here we have 25.0 g/(18.0g/mole) = 1.39 moles water (3 sig figs).
Multiply 1.39 moles times the definition of a mole to arrive at the actual number of water molecules:
1.39 (moles water) * 6.02 x 1023 molecules water/(mole water) = 8.36 x 1023 molecules water.
That's slightly above Avogadro's number, which is what we expected. Keeping the units in the calculations is annoying, I know, but it helps guide the operations and if you wind up with the unit desired, there is a good chance you've done the problem correctly.
N = n × (6.022 × 10^23)
1 grams H2O is equal to 0.055508435061792 mol.
Then 23 g of H2O is 1.2767 mol
To calculate the number of particles, N, in a substance:
N = n × NA
N = 1.2767 × (6.022 × 10^23)
N= 176.26
N=