Answer:
The specific heat capacity is q_{L}=126.12kJ/kg
The efficiency of the temperature is n_{TH}=0.67
Explanation:
The p-v diagram illustration is in the attachment
T_{H} means high temperature
T_{L} means low temperature
The energy equation :
= R*
in(
/
)



The specific heat capacity:
=q_{h}*(T_{L}/T_{H})
q_{L}=378.36 * (400/1200)
q_{L}=378.36 * 0.333
q_{L}=126.12kJ/kg
The efficiency of the temperature will be:
=1 - (
/
)
n_{TH}=1-(400/1200)
n_{TH}=1-0.333
n_{TH}=0.67
Answer:
B. changing by a constant amount each second
Explanation:
thats my answer
Answer: 0.392 m/s
Explanation:
The Doppler shift equation is:

Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the speed of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which are the red blood cells
Isolating
:


Finally:

30x30=900
The answer is 900 meters after 30 seconds
Energy and Work have the same unit of measurement which is Joules in SI units.
Explanation:
- A Joule of Work is said to be done on an object when energy is transferred to that particular object.
- If two objects are involved, when one object transfers energy onto the second, a joule of work is said to be done by the first object.
- Work is also the application of force on an object over a distance. So Work = Force × Displacement
- Energy is neither created nor destroyed. It is in 2 forms - kinetic and potential.
- Kinetic energy is defined as the energy of a moving object while potential energy is known as the energy that is stored within an object.
- Kinetic Energy = 1/2 × mass × (velocity)²
- Potential Energy = mass × acceleration due to gravity × height
- Both energy and work are measured in Joules.