Answer:
In the chemical industry.
<span><span>Mn<span>O<span>2<span>(s)</span></span></span>+<span>H<span>2<span>(g)</span></span></span>→Mn<span>O<span>(s)</span></span>+<span>H2</span><span>O<span>(g)</span></span></span></span>
The sodium-potassium pump does not run out of ions since ion exchange is essential for the action potential to take place and to maintain homeostasis.
The cell has variable concentrations of different substances compared to the environment that surrounds it, with significant differences with sodium and potassium.
- The main function of the sodium-potassium pump is to maintain homeostasis of the intracellular medium, controlling the concentrations of these two ions.
- In order to carry out the adequate exchange of sodium and potassium ions in the extra and intracellular medium, the cells need an active transport process that is carried out thanks to the sodium potassium pump.
- This process is needed for the maintenance and functioning of cells, and it is essential for the action potential to be executed, necessary for the transmission of electrical impulses from neuron to neuron.
Therefore, we can conclude that the sodium potassium pump produces an exchange of potassium ions for sodium ions which keeps the cellular system functioning properly.
Learn more here: brainly.com/question/24336764
Answer:
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Explanation:
Let's write out the chemical equation between Nitrogen and Hydrogen to Form Ammonia.
Nitrogen + Hydrogen = Ammonia
N₂ + H₂ → NH₃
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH.
The balanced stoichiometric chemical equation is given as;
N₂ + 3H₂ → 2NH₃
92.2 kJ of energy are evolved for each mole of N2(g) that reacts. And from the equation, 1 mole of N2 reacts.
The enthalpy change, ΔH = - 92.2KJ. The negative sign is because heat is being evolved.
The balanced thermochemical equation;
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ