Physical Properties: Sodium bicarbonate is an odorless, white crystalline solid or fine powder. It has a slightly alkaline taste. Its density is 2.20 g mL-1 and it decomposes in temperatures above 50 ºC. The decomposition yields to sodium carbonate. It is highly soluble in water and poorly soluble in acetone and methanol. It is insoluble in ethanol.
Chemical Properties: Sodium bicarbonate is an amphoteric compounds, it means the compound has a character acids an basic at the same time. It is highly soluble in water, resulting in a slighty alkaline solution.
i hope this part helps i will continue to research on Toothpaste's properties
Answer:
A. Atoms randomly crashing into each other
E. The force of one object pushing against the force of another object.
Explanation:
Forces can be classified into two categories based upon the the mode of transfer or application:
1. Contact forces
2. Non-contact forces
Contact forces are the ones which require the physical contact of the matter to get transferred and tend to create the affect. Whereas non-contact forces have the field property which transfers the affect of force from one point to another without any physical contact of the matter or the medium.
- Atoms crashing onto each other have some mass and velocity which upon collision impacts the other atoms exerts a contact force.
- The interaction between the charged particles due to their charges is always due to the electric field be it electron or proton, be it within an atom or out of an atom.
- The force between any two objects pushing or pulling each other is also possible only due to contact.
This would be 8.010 * 10^-2
Answer:

Explanation:
You look at the type of atom and their electronegativity difference.
If ΔEN <1.6, covalent; if ΔEN >1.6, ionic
Ar/Xe: Noble gases; no reaction
F/Cs: Non-metal + metal; ΔEN = |3.98 – 0.79| = 3.19; Ionic
N/Br: Two nonmetals; ΔEN = |3.04 - 2.98| = 0.
Since glycolysis of one glucose molecule generates two acetyl CoA molecules, the reactions in the glycolytic pathway and citric acid cycle produce six CO2 molecules, 10 NADH molecules, and two FADH2 molecules per glucose molecule