Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Newton's first law is sometimes known as the law of inertia. It is the law that states that an object at rest will stay at rest and an object in motion will stay in motion unless a force acts upon it. For example, if I was working with a wrench in space an it slipped, it would keep on going in one direction with a constant speed unless it hits something. Hope this helps!
Answer:
A related type of beta decay
Explanation:
Answer:
136 meters.
Explanation: If it can go 17 meters a second, then after 8 seconds, it will go 136 meters. Multiple 17 by 8 to get your answer.
The correct answer is C. 1995
Explanation:
The graph shows the changes in the harvest of Atlantic cod. In general, this graph illustrates how the peak occurred in the 1980s but then there was a sudden and sharp decline in 1995. Indeed, 1995 is the year with the lowest number of harvested cod as in this year there were approximately least than 10 thousand metric tonnes of cods. Also, this year shows the collapse of fishing stocks or that the population of this fish collapsed, which made it impossible to harvest as many fish as in previous years. According to this, the year that shows the collapse of fishing stocks is 1995.