Explanation:
Tectonic plate interactions are classified into three basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.
Answer:
a) d = 6.0 m
Explanation:
Since car is accelerating at uniform rate then here we can say that the distance moved by the car with uniform acceleration is given as

here we know that



now we will have



This question is incomplete because the options are missing; here is the complete question
The ozone layer is found in which layer of the atmosphere?
A. Stratosphere
B. Mesosphere
C. Thermosphere
D. Troposphere
The correct answer is A. Stratosphere
Explanation:
The ozone layer as indicated by its name is mainly composed of Ozone (O2), this layer is essential for life because it filters ultraviolet radiation and acts as a greenhouse effect gas by trapping part of the heat from the sun. Additionally, the ozone layer is located in the stratosphere, which is the second layer of the atmosphere and can be found between 20 km to 50 km from Earth's surface. Moreover, the existence of the ozone layer in the stratosphere makes the temperature increase with height due to the radiation of the sun filter by ozone.
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Write out what you have which is:
initial velocity
final velocity
Y distance
degree
You do not have :
a
X distance
t
from what you have you can plug into your formulas to get time.