Answer:
True
Explanation:
An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. You are changing light or dark
Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]
Answer:
The boats are 934.65 feet apart
Explanation:
Given:
The angles of depression to the two boats are 42 degrees and 29 degrees
Height of the observation deck i = 1,353 feet
To Find:
How far apart are the boats (y )= ?
Solution:
<em><u>Step 1 : Finding the value of x(Refer the figure attached)</u></em>
We can use the tangent ratio to find the x value


x = 590.47 feet
<em><u>Step 2 : Finding the value of z (Refer the figure attached)</u></em>


z = 1525.12 feet
<em><u>Step 3 : Finding the value of y (Refer the figure attached</u></em>)
y = z -x
y = 1525.12 - 590.47
y = 934.65 feet
Thus the two boats are 934.65 feet apart
Answer:
Bernoulli's equation states mathematically that if a fluid is flowing through a tube and the tube diameter decreases, then the velocity of the fluid increases, the pressure decreases, and the mass flow (and therefore volumetric flow) remains constant so long as the air density is constan
Explanation:
Answer:
(a) 7 m
(b) 1 m
Explanation:
Given:
The magnitude of displacement vector 'a' is 3 m
The magnitude of displacement vector 'b' is 4 m.
The vector 'c' is the vector sum of vectors 'a' and 'b'.
(a)
Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.
(b)
When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.