The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Answer:
F = 100 Newtons
Explanation:
F = ?
m = 0.04kg
u = 0m/s ==> u is just an abbreviation for initial velocity, it is conventional.
s = 50m ==> s is just an abbreviation for distance, it is conventional.
v = 500m/s ==> v is just an abbreviation for final velocity, it is conventional.

Then F = ma = 0.04 x 2500 = 100N
Let's assume that Zoey ran at a constant speed. we can use the equation,
d = st
where, d = distance, s = speed, and t = time taken.
By rearranging,
s = d/t
Zoey had travelled 100 m in 20 seconds.
Hence, s = 100 m / 20 s = 5 m/s
therefore Zoey's speed at 100 m is 5 m/s
Machine cycle. The four steps which the CPU carries out for each machine language instruction: fetch, decode<span>, execute, and store. hope that helped</span>
Ozone is a molecule that consists of three oxygen atoms. When high-energy ultraviolet rays strike ordinary oxygen molecules (O2), they split the molecule into two single oxygen atoms, known as atomic oxygen. A freed oxygen atom then combines with another oxygen molecule to form a molecule of ozone. Hydrocarbons and nitrogen oxides come from great variety of industrial and combustion processes. Motor vehicle exhaust and industrial emissions, gasoline vapors, and chemical solvents are some of the major sources of NOx and VOC that acts as a precursor of ozone. In urban areas, the number of automobiles are more and therefore, more production of such harmful gases. These gases in presence of sunlight leads to the formation of bad ozone.