Answer: electric field
Explanation: when a charge is placed in space, it alters the space around it by creating an electric field.
This electric field has the ability to exert a force (f) on any test charge(q) placed within this vicinity.
This is the reason why a charge can either attract or repel another charge.
When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Answer:
i)-6.25m/s
ii)18 metres
iii)26.5 m/s or 95.4 km/hr
Explanation:
Firstly convert 90km/hr to m/s
90 × 1000/3600 = 25m/s
(i) Apply v^2 = u^2 + 2As...where v(0m/s) is the final speed and u(25m/s) is initial speed and also s is the distance moved through(50 metres)
0 = (25)^2 + 2A(50)
0 = 625 + 100A....then moved the other value to one
-625 = 100A
Hence A = -6.25m/s^2(where the negative just tells us that its deceleration)
(ii) Firstly convert 54km/hr to m/s
In which this is 54 × 1000/3600 = 15m/s
then apply the same formula as that in (i)
0 = (15)^2 + 2(-6.25)s
-225 = -12.5s
Hence the stopping distance = 18metres
(iii) Apply the same formula and always remember that the deceleration values is the same throughout this question
0 = u^2 + 2(-6.25)(56)
u^2 = 700
Hence the speed that the car was travelling at is the,square root of 700 = 26.5m/s
In km/hr....26.5 × 3600/1000 = 95.4 km/hr
Answer:
v = 29.4m/s
Explanation:
Since the ball is dropped at rest,
u = 0m/s
a = 9.81m/s²
Using
v = u + at
After 3 seconds,
v = 0 + (9.81)(3)
v = 29.4m/s