Answer:
The statement as aurora australis known as northern lights is incorrect. As the designation of aurora australis is for the southern lights i.e. which occur in the southern hemisphere.
Explanation:
Aurora or natural lights is a phenomenon that occurs at the poles of the Earth due to interaction between the Earth's magnetic field and cosmic rays. This interaction results in the beautiful display of colors on both poles. These are named, aurora borealis or aurora australis depending on their geographical location. If they occur on the northern pole they are termed as aurora borealis while those occurring on the southern pole are named aurora australis.
Explanation:
It is given that,
Initial vapor pressure, P₁ = 77.86 mm
Initial temperature, T₁ = 318.3 K
Final vapor pressure, P₂ = 161.3 mm
Initial temperature, T₂ = 340.7 K
We need to find its heat of vaporization. It can be calculated by using Clausius-Clapeyron equation.




So, the heat of vaporization of a substance is 29.31 kJ/mol. Hence, this is the required solution.
Inertia is what keeps everything moving, so if it didn't exist, the balls wouldn't keep going when they are kicked, or thrown.
Answer:
7.344 s
Explanation:
A = 0.15 x 0.3 m^2 = 0.045 m^2
N = 240
e = - 2.5 v
B1 = 0.1 T
B2 = 1.8 T
ΔB = B2 - B1 = 1.8 - 0.1 = 1.7 T
Δt = ?
e = - dФ/dt
e = - N x A x ΔB/Δt
- 2.5 = - 240 x 0.045 x 1.7 / Δt
2.5 = 18.36 / Δt
Δt = 7.344 s
Answer:
The height of the cliff is 90.60 meters.
Explanation:
It is given that,
Initial horizontal speed of the stone, u = 10 m/s
Initial vertical speed of the stone, u' = 0 (as there is no motion in vertical direction)
The time taken by the stone from the top of the cliff to the bottom to be 4.3 s, t = 4.3 s
Let h is the height of the cliff. Using the second equation of motion in vertical direction to find it. It is given by :



h = 90.60 meters
So, the height of the cliff is 90.60 meters. Hence, this is the required solution.