The shape is connected in parallel so;
5.1) Ans;
![\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} \\ \frac{1}{R} = \frac{1}{2} + \frac{1}{3} \\ \frac{1}{R} = \frac{3 + 2}{6} = \frac{5}{6} \\ R = \frac{6}{5} = 1.2 \: \: ohm](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7BR%7D%20%20%3D%20%20%5Cfrac%7B1%7D%7BR1%7D%20%2B%20%20%5Cfrac%7B1%7D%7BR2%7D%20%20%20%5C%5C%20%20%5Cfrac%7B1%7D%7BR%7D%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2B%20%20%5Cfrac%7B1%7D%7B3%7D%20%20%5C%5C%20%20%5Cfrac%7B1%7D%7BR%7D%20%20%3D%20%20%5Cfrac%7B3%20%2B%202%7D%7B6%7D%20%20%3D%20%20%5Cfrac%7B5%7D%7B6%7D%20%20%5C%5C%20R%20%3D%20%20%5Cfrac%7B6%7D%7B5%7D%20%20%3D%201.2%20%5C%3A%20%20%5C%3A%20ohm)
5.2) Ans;
![\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} \\ \frac{1}{R} = \frac{1}{8} + \frac{1}{10} \\ \frac{1}{R} = \frac{5 + 4}{40} = \frac{9}{40} \\ R = \frac{40}{9} = 4.4 \: \: ohm](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7BR%7D%20%20%3D%20%20%5Cfrac%7B1%7D%7BR1%7D%20%2B%20%20%5Cfrac%7B1%7D%7BR2%7D%20%20%20%5C%5C%20%20%5Cfrac%7B1%7D%7BR%7D%20%20%3D%20%20%5Cfrac%7B1%7D%7B8%7D%20%20%2B%20%20%5Cfrac%7B1%7D%7B10%7D%20%20%5C%5C%20%20%5Cfrac%7B1%7D%7BR%7D%20%20%3D%20%20%5Cfrac%7B5%20%2B%204%7D%7B40%7D%20%20%3D%20%20%5Cfrac%7B9%7D%7B40%7D%20%20%5C%5C%20R%20%3D%20%20%5Cfrac%7B40%7D%7B9%7D%20%20%3D%204.4%20%5C%3A%20%20%5C%3A%20ohm)
I hope I helped you^_^
Answer:
d = 4 d₀o
Explanation:
We can solve this exercise using the relationship between work and the variation of kinetic energy
W = ΔK
In that case as the car stops v_f = 0
the work is
W = -fr d
we substitute
- fr d₀ = 0 - ½ m v₀²
d₀ = ½ m v₀² / fr
now they indicate that the vehicle is coming at twice the speed
v = 2 v₀
using the same expressions we find
d = ½ m (2v₀)² / fr
d = 4 (½ m v₀² / fr)
d = 4 d₀o
Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get
![p_f=p_i\\mv_1+Mv_2=(m+M)v](https://tex.z-dn.net/?f=p_f%3Dp_i%5C%5Cmv_1%2BMv_2%3D%28m%2BM%29v)
m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:
![(0.038kg)(410m/s)+0=(0.038kg+4.2kg)v\\\\v=3.67\frac{m}{s}](https://tex.z-dn.net/?f=%280.038kg%29%28410m%2Fs%29%2B0%3D%280.038kg%2B4.2kg%29v%5C%5C%5C%5Cv%3D3.67%5Cfrac%7Bm%7D%7Bs%7D)
this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:
![E_{fp}=E_{ki}\\\\(m+M)gh=\frac{1}{2}mv^2](https://tex.z-dn.net/?f=E_%7Bfp%7D%3DE_%7Bki%7D%5C%5C%5C%5C%28m%2BM%29gh%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:
![(0.038kg+4.2kg)(9.8m/s^2)h=\frac{1}{2}(0.038kg+4.2kg)(3.67m/s)^2\\\\h=0.68m](https://tex.z-dn.net/?f=%280.038kg%2B4.2kg%29%289.8m%2Fs%5E2%29h%3D%5Cfrac%7B1%7D%7B2%7D%280.038kg%2B4.2kg%29%283.67m%2Fs%29%5E2%5C%5C%5C%5Ch%3D0.68m)
hence, the heigth is 68cm
Accelerated motion such as a vehicle (car) or a moving item such as a (football thrown in the air)