Explanation:
Given that,
Mass of the car, m₁ = 1250 kg
Initial speed of the car, u₁ = 7.39 m/s
Mass of the truck, m₂ = 5380 kg
It is stationary, u₂ = 0
Final speed of the truck, v₂ = 2.3 m/s
Let v₁ is the final velocity of the car. Using the conservation of momentum as :



So, the final velocity of the car is 2.5 m/s but in opposite direction. Hence, this is the required solution.
The second one is correct not sure about the first one sorry
Speed of particle B is 2v₀/3 m/s to the left. Particle A and particle B will always have equal speed since they experience equal forces.
<h3>Conservation of energy</h3>
The speed and direction of the particle B is determined by applying the principle of conservation of energy as follows;
K.E₁ + P.E₁ = K.E₂ + P.E₂


At any given position, the speed of particle A and particle B will be equal, since they experience equal force and they have equal masses.
The complete question is below:
Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the system of two particles assosicated with the force is given by the equation U=G/r 2, where r is the distance between the two particles and G is a positive constant. At time t=T1 particle A is observed to be traveling with speed 2vo/3 to the left. The speed and direction of motion of particle B is ?
Learn more about conservation of energy here: brainly.com/question/166559