Answer:
For the first one its about 25 feet
Explanation:
A nitrogen laser generates a pulse containing 10.0 mj of energy at a wavelength of 340.0 nm and has 1785 x 10¹⁹ photons in the pulse.
<h3>How many photons are in the pulse?</h3>
Energy of a single photon is
E=hcλ
E=6.626×10⁻³⁴ J s×3×108 m/s /340×10⁻⁹ m
E=6.31×10⁻¹⁹ J
Number of photons in the laser is
n=Total Energy/Energy per photon
n=10⁷×10⁻³J /5.90×10⁻¹⁹J/photon
n= 1785 x 10¹⁹ photons
To learn about photons, refer: brainly.com/question/20912241?referrer=searchResults
#SPJ4
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
Answer:
A
Explanation:
An antifreeze is a substance which when added to a liquid reduces the freezing point of the liquid. Hence the solution can only freeze at a lower temperature compared to the solvent. Examples of antifreeze includes salt and propylene glycol. Antifreeze are used in low temperature environments to prevent water from freezing quicky. Hence the answer is A.
Have a great day Aylabailey4930
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.