Answer:
metal> metalloids >nonmetals (Electrical conductivity)
Explanation:
Electrical conductivity of objects can be compared by the bonding energy of electrons in them.
Metals have less bonding energy of electrons, so even at room temperature their are significant number of free electrons to carry electrical current.
Nonmetals have a very high bonding energy of electrons, so at room temperature negligible number of free electrons are present so electrical conductivity is very low.
Metalloids have both metallic and non metallic features. The electron bonding energy falls in between that of metals and nonmetals. So electrical conductivity also lies in between metals and nonmetals.
West to east.
The earth is spinning on its own axis. Thus, the area of the equator directly hit by the sun's heat and more solar radiation compared to any other area. That same heat warmth the atmosphere. Warm air rises towards the pole which is cooler. This is the reason of constant movement of the atmosphere.
The Coriolis force governed the air flows towards the pole. While the earth is spinning plus the movement of air north or south, the air follows a <span>curved path, toward the east.</span>
Complete Question
An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed?
A It should stay the same
B It should be quadrupled.
C It should be quintupled
D It should be doubled.
E It should be tripled
Answer:
Option D is the correct option
Explanation:
Generally electric field is mathematically represented as

Where
is the charge per unit area (Charge density )
From the question we are told that
is doubled hence the
Looking the equation above we see that the value of the electric field will also double given that it is directly proportional to the charge density
Refer to the diagram shown below.
From the geometry, obtain
x = 2.5 - 0.55 = 1.95 m
cos θ = 1.95/2.5 = 0.78
θ = cos⁻¹ 0.78 = 38.74°
From the free body diagram, the tension in the chain is 450 N.
F is the centripetal force,
W is Dee's weight.
The components of the tension are
Horizontal component = 450 sin(38.74°) = 281.6 N, acting left.
Vertical component = 450 cos(38.74°) = 351.0 N, acting upward.
Answers:
Horizontal: 281.6, acting left.
Vertical: 351.0 N, acting upward.
As the mass of an object increases with a constant force applied to it, its acceleration will ultimately decrease