Answer:
The wood's potential energy on the carpenter's shoulder is 150 J.
Explanation:
Given;
mass of the wood, m = 10 kg
height through which the wood was raised, h = 1.5 m
acceleration due to gravity, g = 10 m/s²
The wood's potential energy on the carpenter's shoulder is calculated as;
P.E = mgh
P.E = 10 x 10 x 1.5
P.E = 150 J
Therefore, the wood's potential energy on the carpenter's shoulder is 150 J.
the equation of the line allows us to find the answer is
y = -27.8 t + 97.4
The equation of a line in a linear relationship between two variables, its general expression is
y = A x + B
in this case the slope is the quantity that the independent variable in this case A = -27.8 m / s
The cut-off point that is the value of the dependent variable for x = is b = 97.4 m
In this case we see that the slope has a unit of [m / s] and the dependent variable is a unit of length, therefore the independent variable must have a unit of time [s] so that the entire equation is in units of length
y = -27.8 t + 97.4
[m] = [m / s] [s] + [m]
[m] = [m]
The other two magnitudes with are necessary to write the equation r is the mean square root and gives an idea that the values also fit the line, the best value is 1
In conclusion, the equation of the line allows us to find the answer is
y = -27.8 t + 97.4
learn more about the equation inear here:
brainly.com/question/22851869
Answer:
<em><u>The potential area of wind power in the country is about 6074 sq. km with wind power density greater than 300 watt/m2. More than 3,000 MW of electricity could be generated at 5 MW per sq km. The commercially viable wind potential of the country is estimated to be only about 448 MW.</u></em>
Answer: 
Explanation:
Given
Magnitude of charge is 
Force experienced is 
Electric field intensity is the electrostatic force per unit charge

Thus, the electric field intensity is 