0.00032cm*4.02=1.2864 × 10^-3 in scientific notation.
Answer:
Part(a): the capacitance is 0.013 nF.
Part(b): the radius of the inner sphere is 3.1 cm.
Part(c): the electric field just outside the surface of inner sphere is
.
Explanation:
We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '
' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

Part(a):
Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.
So the capacitance (C) of the shell is

Part(b):
Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

Part(c):
If we apply Gauss' law of electrostatics, then

Heat engines are less than 100% efficient because absolute zero cannot be reached
Answer:
<h3>62.5N</h3>
Explanation:
The pressure at one end of the piston is equal to the pressure on the second piston.
Pressure = Force/Area
F1/A1 = F2/A2
Given
F1 = 250N
A1 = 2.0m²
A2 = 0.5m²
F2 = ?
Substituting the given values in the formula;
250/2 = F2/0.5
cross multiply
250*0.5 = 2F2
125 = 2F2
F2 = 125/2
F2 = 62.5N
Hence the force needed to lift this piston if the area of the second piston is 0.5 m^2 is 62.5N