Answer:
Mass of the aluminium chunk = 278.51 g
Explanation:
For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same
A specific heat formula is given as
Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature
Q = m×c×ΔT
Heat gain by aluminium + heat lost by copper = 0 (1)
For Aluminium:
Q = 
Q = m x 17.94 joule
For Copper:

Q= 4996.53 Joule
from eq 1
m x 17.94 = 4996.53

Mass of the aluminium chunk = 278.51 g
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=
Answer:
a) Yes
b) 7 rad/s
c) 0.01034 J
Explanation:
a)
Yes the angular momentum of the block is conserved since the net torque on the block is zero.
b)
m = mass of the block = 0.0250 kg
w₀ = initial angular speed before puling the cord = 1.75 rad/s
r₀ = initial radius before puling the cord = 0.3 m
w = final angular speed after puling the cord = ?
r = final radius after puling the cord = 0.15 m
Using conservation of angular momentum
m r₀² w₀ = m r² w
r₀² w₀ = r² w
(0.3)² (1.75) = (0.15)² w
w = 7 rad/s
c)
Change in kinetic energy is given as
ΔKE = (0.5) (m r² w² - m r₀² w₀²)
ΔKE = (0.5) ((0.025) (0.15)² (7)² - (0.025) (0.3)² (1.75)²)
ΔKE = 0.01034 J
Frequency and wavelength are inversely proportional.
A shorter wavelength implies a higher frequency.
That latest value for the Angle is in Grads, not in Kilograms.
Apply law of conservation of momentum along vertical direction.


Apply law of conservation of momentum along the horizontal direction





The second ball velocity is 
The magnitud of final total momentum is

The magnitude of final energy is
