Answer:
0.17325 moles per liter per second
Explanation:
For a first order reaction;
in[A] = in[A]o - kt
Where;
[A]= concentration at time t
[A]o = initial concentration
k= rate constant
t= time taken
ln0.5 =ln1 - 2k
2k = ln1 - ln0.5
k= ln1 - ln0.5/2
k= 0 -(0.693)/2
k= 0.693/2
k= 0.3465 s-1
Rate of reaction = k[A]
Rate = 0.3465 s-1 × 0.50 mol/L
Rate = 0.17325 moles per liter per second
Answer:
The orbital shapes are actually representation of (Ψ)2 all over the orbit simplified ... ψnlml(r,θ,ϕ)=Rnl(r)Ymll(θ,ϕ) , ... and thus it is directly linked to the angular and radial nodes. ... for different quantum values(which can be assigned to different orbitals are ) .... The two types of nodes are angular and radial.
Explanation:
hope it helps
Answer:The distribution of electrons in an atom is called as Electronic Configuration. Formula 2n2 helps in the determination of the maximum number of electrons present in an orbit, here n= orbit number.
Explanation:
If an object has a higher density than the fluid it is in (fluid can mean liquid or gas), it will sink. If it has a lower density, it will float. Density is determined by an object's mass and volume. If two objects take up the same volume, but have one has more mass, then it also has a higher density.
For this problem, we use the Beer Lambert's Law. Its usual equation is:
A = ∈LC
where
A is the absorbance
∈ is the molar absorptivity
L is the path length
C is the concentration of the sample solution
As you notice, we only have to find the absorbance. But since we are not given with the molar absorptivity, we will have to use the modified equation that relates % transmittance to absorbance:
A = 2 - log(%T)
A = 2 - log(27.3)
A = 0.5638